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Abstract

During the year 2016, the Banco Central de la Republica Argentina has be-
gun to announce inflation targets. In this context, providing the authorities
of good estimates of relevant macroeconomic variables turns out to be crucial
to make the pertinent corrections in order to reach the desired policy goals. This
paper develops a group of models to forecast inflation for Argentina, which
includes autoregressive models, and different scale Bayesian VARs (BVAR),
and compares their relative accuracy. The results show that the BVAR model
can improve the forecast ability of the univariate autoregressive benchmark’s
model of inflation. The Giacomini-White test indicates that a BVAR performs
better than the benchmark in all forecast horizons. Statistical differences
between the two BVAR model specifications (small and large-scale) are not
Jfound. However, looking at the RMSEs, one can see that the larger model
seems to perform better for larger forecast horizons.

Keywords: Bayesian vector autoregressive, forecasting, prior specification,
marginal likelihood, small-scale and large-scale models.

JEL classification: C11, C13, C33, C53.

Lorena Garegnani <lgaregnani@bcra.gob.ar>, Principal Analyst of Research Depart-
ment at the Banco Central de la Republica Argentina, and Mauricio Gémez Aguirre
<mauricio.gomezaguirre@bcra.gob.ar>, Principal Analyst of Research Department
at the Banco Central de la Republica Argentina. This research was developed within
the framework of CEMLA’s Joint Research Program 2017 coordinated by the Banco
Central de la Republica, Colombia. The authors thank counseling and technical ad-
visory provided by the Financial Stability and Development Group (FsD) of the Inter-
American Development Bank in the process of writing this document. The opinions
expressed in this publication are those of the authors and do not reflect the views
of CEMLA, the FSD group, the Inter-American Development Bank, or the Banco Cen-
tral de la Republica Argentina.

223


mailto:lgaregnani@bcra.gob.ar
mailto:mauricio.gomezaguirre@bcra.gob.ar

1. INTRODUCTION

everallong-term nominal commitmentssuchaslabor contracts,

mortgages and other debt are widespread features of modern

economies. Forecasting how the general price level will evolve
over the life of a commitment is an essential part of private sector
decision-making.

The existence of long-term nominal obligations is also among
the primary reasons economists generally believe that monetary
policyis not neutral, atleast over moderate horizons.

Central banks aim is to keep inflation stable, and perhaps also
tokeep outputnearan efficientlevel. With these objectives, the New
Keynesian model makes explicit that optimal policy will depend
on optimal forecasts (e.g., Svensson, 2005), and further, that policy
will be most effective when it is well understood by the public.

Under inflation targeting the central banks generally released fore-
casts in quarterly Inflation Reports in a way to be more transparent
in their actions. The costs and benefits of transparency are widely
debated, but the need for a central bank to be concerned with infla-
tionforecastingis broadlyagreed. Inshort, inflation forecastingis of
foremostimportance to households, businesses, and policymakers.

During the year 2016, the Banco Central de la Reptuiblica Argen-
tina (BCRA) hasbeguntoannounceinflation targets. In this context,
providing the authorities of good estimates of relevant macroeco-
nomic variables turns out to be crucial to make the pertinent cor-
rectionsin order to reach the desired policy goals.

Astandard toolin macroeconomics thatis widely employed in fore-
castingisvectorautoregressive (VAR) analysis. VARs are flexible time
seriesmodelsthat can capture complex dynamicrelationshipsamong
macroeconomic aggregates. However, their dense parameterization
oftenleadstounstableinference and inaccurate out-of-sample fore-
casts, particularlyfor modelswith manyvariables, due to the estima-
tion uncertainty of the parameters.

Litterman (1980) and Doan, Litterman, and Sims (1984) have pro-
posed tocombinethelikelihood function (the data) with some infor-
mative prior distributions (the researcher’s belief about the values
of coefficients) toimprove the forecasting performance of VAR mod-
els, introducing a Bayesian approach into VAR modeling.
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In any Bayesian inference, a fundamental yet challenging step
is prior specification, which influences posterior distributions of the
unknown parameters and, consequently, the forecasts (Geweke,
2005). Fortunately, theliterature has proposed some methodologies
to set how informative the prior distributions should be.

Regarding prior selection, Litterman (1980) and Doan, Litter-
man, and Sims (1984) set the tightness of the prior by maximizing
the out-of-sample forecasting performance of a small-scale model.
Many authors follow this strategy, such as Robertson and Tallman
(1999) and Wright (2009), and Giannoneetal. (2014), whominimize
the root mean square error (RMSE) of the forecasts.

On the other hand, Banbura et al. (2008) propose to control
the overfitting caused by the considerable number of variablesin the
model, by selecting the shrinkage of the coefficients in such a way
asto give an adequate fitting in-sample. Within this second selection
strategy, we can find authors such as Giannone et al. (2012), Bloor
and Mathenson (2009), Carriero etal. (2015) and Koop (2011).

Banbura, Giannone, and Reichlin (2008) showed that, by ap-
plying Bayesian VAR methodology, they were able to handle large
unrestricted VARs models and therefore they demonstrated that
VAR framework can be applied to empirical problems that require
the analysis of more than afewsets of time series. The authors showed
that a Bayesian VAR is a viable alternative to factor models or panel
VARs for analysis of large dynamic systems.

This paper developsagroup of modelsto forecastinflation for Ar-
gentina, which includes autoregressive models, and different scale
Bayesian VARs (BVAR), and compares their relative accuracy.

The paperisorganized as follows: Section 2 presents the method-
ological aspects related to the application of Bayesian analysis in a
VAR framework, Section 3 presents a brief description of the data,
Section 4 goes through the empirical results, and finally, Section
5 concludes.

2. BAYESIAN VAR METHODOLOGY

A VAR model has the following structure

n y=c+Byy g+ +Byy_,+e,
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where y, isa nx1 vector of endogenous variables, ! Mo isa
nx1 vector of exogenous shocks, cisa nx1 vector of constants, B,
to Bp are nxn matrices, and X' is nxn covariance matrix.

The BVAR coefficients are a weighted average of the prior mean
(researcher’s belief) and the maximum likelihood (ML) estimators
(inferred from the data), with the inverse covariance of the prior
and the ML estimators as weights.

Consider the following posterior distribution for the

VAR coefficients

[=] BlQ~N(By.Q7'E)

where thevector g isthe prior mean (whose elementswill represent
the coefficient in Equation 1, the matrix £ is the known variance
of the prior, and & is a scalar parameter controlling the tightness
of the prior information. Even though 2 could have many shapes,
gamma and Wishart distributions are frequently used in the litera-
ture, since they ensure a normally distributed posterior.!

The conditional posterior of 8 can be obtained by multiplying
the prior by the likelihood function. The posterior takes the form

3] Bley-N(BE)P©),

where

B(E)=vec(B(E)),

and

5 BE)=(xx 7" + @)D (wy T @5) 1By,

! If the posterior distributions are in the same family as the prior prob-

ability distribution, the prior and posterior are then called conjugate
distributions.
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6| V(E)=(xx2l+ @)L

Vectorsyand xrepresent observed datawhile g, isamatrixwhere
each column corresponds to the prior mean of each equation.

Itisimportanttonote thatifwe choosealarge valuefor &, the prior
will havelittle weightinto the posterior. This translatestolarge vola-
tility of the priorand not enough information coming from the prior.
Ontheother hand, ifthe & issettoasmallvalue (i.e., close to zero),
the prior becomes more informative and the posterior mean moves
towards the prior mean. Tosee this point, we can express 5 as follows:

B(E)=0l0; B+ '®@x)y]

and

n Q=[§251+2_1®x'x]_1-

Ifthe second element between bracketsin Equation 7is multiplied
by (x’x)_1 (x'x), we obtain the following equations:

[¢] B(E)=0[0;" B, 1+ Q1= @x'x(x'x) ' x'y]

10| B(E)= 0125 "By 1+ Q[ @x'x(x'x)B ;]

Ascanbeseen, the posteriorisaweighted average between the pri-
orandtheordinaryleastsquare (OLS) estimators,*where the weights
arethereciprocal of the prior covariance matrix and the reciprocal
ofthe OLS covariance matrix respectively. Asaresult, ifthe informa-
tion contained in the data is good enough to describe the process

2 The ols estimators of a var coincide exactly with the ml estimators
conditional on the initial values.
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behind it, the posterior will move towards the OLS estimators. How-
ever, it is important to underscore that, even if the available series
areadequate to describe the datagenerating process, theresearcher
could still formulate a hypothesis about the distribution of the pa-
rameters based on his own beliefs. Thatwould implyignoring the in-
formation contained in the data, and usually that kind of decisions
are based on strong beliefs.

Theissue mentionedinthelast paragraph demonstratesthe need
to be cautious about choosing the prior mean and the hyperpriors.
In the following subsections, these aspects are discussed in more
detail.

2.1 Level or Growth Rate

Itisunclearaprioriwhethertransformingvariablesinto their growth
rates can enhance theforecast performance ofa BVAR model. On one
hand, thelevel specification can betteraccommodate the existence
oflong-run (cointegrating) relationshipsacrossthevariables, which
would be omitted in a VAR in differences. On the other hand, Cle-
ments and Hendry (1996) have shown thatin a classical framework,
differencing canimprove forecasting performance in the presence
ofinstability.

There hasbeenlittle effortin the BVARliterature to compare speci-
ficationsinlevelsversusdifferences. Carriero etal. (2015) work with
this specific topic and found that models in growth rates generally
yield more accurate forecasts than those obtained from the models
in levels. However, we can find both approaches in the literature.
Followingthe Litterman (1986) tradition, some authors considered
BVARs with variables in levels (e.g., Banbura et al., 2008; Giannone
etal., 2014, and Giannoneetal., 2012). Otherauthors used BVARs with
variablesin differences or growthrates (e.g., Clarkand McCracken,
2007, and Del Negro etal., 2004).

Asmentioned above, thereisno apparentreason to optforseries
inlevels orin differencestowork with; nevertheless, choosingarep-
resentation ex-ante, gives us information about the characteristics
of the prior distribution (values of the mean prior). For example,
working with variables in differences implies that the persistence
ofthose variablesshould be low, and that one should impose anum-
ber close to zeroasa prior mean of the firstlag, denoting low persis-
tenceintheseries.
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Sinceitisagood practicetostartwithsomeideaaboutthevaluethat
the prior could take and encouraged by the evidence found by Carri-
eroetal. (2015), we have opted towork with variables in differences.

Inthe nextsubsection, we will treat the variance of the priorasan-
otheraspect of prior distribution.

2.2 Choice of Hyperparameters and Lag Length Strategy

To select the hyperparameters and the lag length we will follow
thestrategysuggested by Banburaetal. (2008), Carriero, etal. (2015)
and Giannone et al. (2012). Suppose, that a model is described by a
likelihood function p(yl 6) and a prior distribution Py (8), where 0
isavector parameter of the modeland ¥ isavector of hyperparam-
eters affecting the distribution of all the priors of the model. It is
natural to choose these hyperparameters byinterpreting the model
asahierarchicalone, i.e.replacing p, (8) with p(Bry )and evaluating
their posterior (Berger, 1985; Koop, 2003). In this way, the posterior
can be obtained by applying Bayes’ law

11 p(r [3)= P3|y )p(r),

where p(y) isthe density of the hyperparameters and p(y‘ y )is the
marginallikelihood. Inturn, the marginallikelihood is the density
that comes from the datawhen the hyperparameters change-in oth-
erwords, the marginallikelihood can be obtained afterintegrating
out the uncertainty about the parameters in the model,

12 P(y‘y)=f p03|0.7)p(8]y)do.

For every conjugate prior, the density p(y |y) can be computed
in closed form. To obtain the Bayesian hierarchical structure, it is
necessary to obtain the distribution of p(6) by integrating out the
hyperparameters

pO)=[ p@®.y)m(y)dy.
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More precisely, we can find different values of the prior distribu-
tion from different hyperparameter values and, in this way, we can
represent the posterior as:

PO, ]9 =p(3]0,7)p(0,7)p(r).

The marginal likelihood should be sufficient to discriminate
among models; in this sense, we can choose models with differ-
ent hyperparameters and different likelihood specification (more
precisely, lags length structure). To make this point operational,
we estimate different models, following Giannone et al. (2012),
whointroduceaprocedureallowing to optimize the values of the hy-
perparameters that maximize the value of the marginallikelihood
of the model. This implies that the hyperparameter values are not
seta priori butare estimated.

Then the marginal likelihood can be estimated for every com-
bination of hyperparameter values within specified ranges and for
different lag length structures, and the optimal combination is re-
tained as the one that maximizes that value.

2.3 Comparison Strategy

Inthissubsection, we presentsome detailsabout ourstrategyfor mod-
el comparison. We will mention the steps that we will follow to do
it and then give more details about the predictive ability tests used
for comparison:

a) Estimate a univariate AR model.
b) Compute the relative RMSE to the AR from (a).
¢) Compute the relative RMSE to the BVAR.?

d) Run the test of Giacominiand White (2006) to compare both
models.

Our benchmark is a univariate model. This means that we have
athand differentstatistical measuresthat cover both the frequentist

® The mean of the predictive density is considered.
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and the Bayesian approaches. While frequentist literature tends
tocomparetheforecastswithactualvalues, Bayesian literature com-
parestherealized values with the whole posterior predictive density.
The testing methodology of Giacomini and White (2006) con-
sists on evaluating relative forecast accuracy with a Diebold-Maria-
no (1995) like test, but with one central difference: The size of the
in-sample estimation window is kept fixed, instead of expanding.
Using the sample observations available at time ¢, forecasts of ¥, ,
are produced for different ¢ for given t periodsinto the future, with
rolling windows of estimation with the two models that are being
compared. The sequences of forecasts are then evaluated accord-
ing to some loss function and then the difference of forecast losses
is computed. This way, atime series of differences in forecast losses

AL

+T
The testthen consists on a Wald test on the coefficients of the regres-
sion ofthatseriesagainstaconstant, the unconditional version of the
testin Equation 15, oragainst other explanatoryvariables, the con-

(é ) thatdepends on the estimated parametersis constructed.

ditional version in Equation 16:

AL, (0)=p+e,,
16 AL, (0)=B'X,+¢,.

Standard errors may be calculated using the Newey-West covari-
ances estimator, controlling for heteroskedasticityand autocorrela-
tion. In this paper, the unconditional version is used.

The Giacomini-White test* has manyadvantages: It captures the ef-
fect of estimation uncertainty onrelative forecast performance, ital-
lows for comparison between either nested or non-nested models,
and, finally, it is quite easy to compute.

* See chapter 17 of the book by Hashimzade and Thornton (2013) for a
detailed discussion about this test.

Forecasting Inflation in Argentina 231



2.4 Model Specification

We follow Banburaetal. (2008) and analyze two VAR models that in-
corporate variables of special interest, including indicators of real
economicactivity, consumer prices, and monetaryvariables. We con-
sider the following two alternative models:

Small-scale model. This is a small monetary VAR including three
keyvariables:

a) Prices: We used the consumer price index constructed by the
Instituto Nacional de Estadisticay Censos delaRepublica Argenti-
na (INDEC). After December 2006 until July 2012, the previous
seriesislinked with the evolution of the consumer price index
provided by the Instituto Provincial de Estadisticasy Censos
de San Luis and, after July 2012, series is again linked with
the evolution of the consumer price index of the city of Bue-
nos Aires.’

b) Economicactivity: We used amonthly economic activity indi-
cator known as EMAE (Estimador Mensual de Actividad Eco-
némica) published by the INDEC. The EMAE is based on the
value added for each activityatabase price plus net taxes (wi-
thout subsidies), and it uses weights provided by Argentina’s
National Accounts (2004). It triesto replicate quarterly GDP at
amonthly frequency.

¢) Interestrate: Weused datafromthe BCRAon 30to 59-dayfixed
term deposit rates.

Large-scale Model. In addition to the variablesincluded in the small-
scale model, thisversion alsoincludestherest of thevariablesinthe
dataset. These are detailed in the next section.

In September 2016, Argentina transitioned to an inflation tar-
geting regime. This could generate a structural break in the mean
andvariance. Toaccountfor this possible change in the mean of the

® From December 2006 to October 2015, the index by the INDEC pre-
sented severe discrepancies with provincial and private price index,
and hence was discarded for that period.
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process, we incorporate a dummy variable in both specifications
(Marcelino and Mizon, 2000).°

Aswe compare models of different sizes, we need astrategy on how
to choose the shrinkage hyperparameter as models become larger.
Asthe dimension increases, we want more shrinkage, as suggested
bytheanalysisin De Mol etal. (2008) to control for overfitting. We set
the tightness of the prior for the model to have better in-sample fit;
in this way, we are shrinking more in alarger dimension model.

3. DATA

Ourdatasetis composed of agroup of 16 monthly macroeconomic
variables of Argentina available on a monthly frequency. Sources
of the series, the transformations did on them and their stationar-
ity characteristics are described in the Annex.

4. RESULTS

4.1 Estimation of the BVAR Model

4.1.1 The Optimal Hyperparameters

We work with a Normal-Wishart BVAR specification. In this type
of specification, there are two hyperparameters and two param-
eters. We estimate the overall tightness Ay, lag decay A3, and the
laglength as we have described in Section 2.2, and then we impose
the value of the prior mean (the autoregressive coefficient) equal
to zero as discussed earlier.

The hyperparameter of the overall tightness 4y is the standard
deviation of the prior of all the coefficientsin the system other than
the constant. In other words, it determines how all the coefficients
are concentrated around their prior means.

The term A4 isadecay factor and 1/(L;‘3 ) controls the tightness
onlag Lrelative tothe firstlag. Since the coefficients of higher order

% In the Annex, we show the posterior estimation of the whole sample
to see the effect of this. We controlled the change in the mean due the
transition to an inflation targeting regime and indeed obtained a sig-

nificant coefficient in both models.
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lagsare morelikelytobe close to zero than those of lower orderlags,
the prior for the standard deviations of the coefficients decrease
asthelaglengthincreases. Thevalues usuallyused in theliterature
are 1 or 2, sowe settle for Mg =2.

The prior variance of the parameters of $(£)is set according to:

1A
{32

o; I
where ¢? denotes the OLS residual variance of the autoregressive
coefficient for variable j, 4, is an overall tightness parameter, L is
the currentlag, and A, isascaling coefficient controlling the speed
at which coefficients for lags greater than 1 converge to 0.
For exogenous variables, we define the variances as:

m o* :()'1)’4 )2

Theresults for the hyperparametersand prior means of the small
andthebigscale modelareshownin Table 1. Allthe hyperparameters
are equalforbothtype of models exceptfor the hyperparameter A,.

The characteristics of our hyperparameters after the optimiza-
tion procedure is as follow:

LIST OF HYPERPARAMETER VALUES

Hyperparameters values Large-scale model Small-scale model
Autoregressive coefficient: 0 0
Overall tightness (4,). 0.05 0.23
Lag decay (44): 2 2
Exogenous variable tightness 1 1
Lag length 1 1
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The hyperparameter 4, isequalto 0.05 for the large-scale model
while the hyperparameter 4, forthesmall-scaleis 0.23. Froma prac-
tical point of view, this means that the ¢rue value of the coefficients
estimated (posterior) is probably to be farther from the prior mean
in the small-scale model than in the large-scale one.

Another aspectto consider about 4, isthe fact that this hyperpa-
rameter impacts on the distribution of the parameters oflagged en-
dogenous and exogenous variables of each equation in the system.
In this sense, with more shrinkage, for example, it is less probable
that the posterior coefficients of the lagged endogenous and exog-
enousvariables depart from the prior.

As can see in Table 1, the posterior coefficients of the variables
in the large-scale model are less probable to depart from the prior
than the small-scale ones. Models with lots of variables will tend
to have a better in-sample fit even when 4, is set to loose value.

The posteriors obtained for the small- and the large-scale mod-
el of the inflation equation in each type of model are shown in the
Annex.

4.1.2 Forecasting Exercise

Our forecasting exercise is conducted in the following way. We esti-
mate the hyperparameters considering the whole sample, through
the maximization of the marginallikelihood;and then, we compute
the forecasts.

As we mentioned before, the data set goes from January 2004
to July 2017. We compute one-, three- and six-step-ahead forecasts
with rolling windows. The size of the estimation sample is the same
for each forecast horizon. Out-of-sample forecast accuracy is mea-
sured interms of RMSE of the forecasts. Therefore, we obtained three
RMSEs for each model.

Relative forecast accuracy is analyzed in Table 2, by computed
the different combinations of RMSEratios. On average, the BVAR pres-
ents betteraccuracythan the benchmarkindependently of the fore-
casthorizon. Forimmediate horizons, the small-scale modelslightly
outperformsthelarger one, but thelarge-scale model outperforms
the small one for further forecast horizons.
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Table 2

RELATIVE FORECAST ACCURACY

One-step-ahead Three-steps-ahead Six-steps-ahead
Ratio Ratio Ratio
Ratio Ratio large Ratio Ratio large Ratio Ratio large
small large model- small large model- small large model-
model- model- small model- model- small model- model- small
benchmark — benchmark — model — benchmark benchmark — model — benchmark benchmark — model
0.77 0.90 1.69 0.78 0.77 1.02 0.87 0.82 0.94

In the next subsection, we analyze these results with a Giacomi-

ni-White test.

4.2 Forecast Evaluation

To evaluate the predictive performance of the different models,
we used the tests described earlier. Each column of Table 3 contains
the probability value of Giacomini-White test statistic for the differ-

ent models.

Table 3
GIACOMINI-WHITE TEST
Large BVAR vs. Small BVAR vs.  Difference between

Forecast horizon benchmark benchmark BVAR models
One-step-

ahead 0.03 0.01 0.29
Three-steps- 0.00 0.00 0.49

ahead ’ ’ :
Six-steps-

ahead 0.09 0.05 0.41
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The result of the Giacomini-White test shows that, ata 5% of sig-
nificance level, the large BVAR model outperforms the benchmark
for onestep and three stepsahead forecast horizon, while the small
BVAR outperforms the benchmark at a 5% significance level for all
forecasthorizons. Thelast column of the table shows the Giacomini-
White test applied to the differences in predictive ability between
the small- and large-scale BVAR models, but in this case, the differ-
ences are not significant for all forecast horizons.

5. CONCLUSIONS

This paper assesses the performance of Bayesian VAR to forecast in-
flationin Argentina. We considered a Normal-Wishart BVAR specifi-
cation forasmall-and alarge-scale model of differentiated variables
setting the prior mean according to standard recommendations
in previous studies. The overall tightness hyperprior and the
lag length of the different models were set by optimization of the
marginal likelihood. We found that large-scale models have nar-
rower priors, giving more weight to the priors mean than small-
scale models.

Overall, theresultsshowthat the BVAR model canimprove the fore-
castability of the univariate autoregressive benchmark’s model of in-
flation. The Giacomini-White test indicates that a BVAR performs
better thanthe benchmarkin allforecast horizons. Statistical differ-
ences between the two BVAR model specifications (small and large-
scale) are not found. However, looking at the RMSEs, one can see that
thelarger modelseemsto performbetter forlarger forecast horizons.
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Annex A. Data Characteristics

LIST OF ENDOGENOUS VARIABLES

Source Description Transf.  Characteristics
1 INDEC EMAE log SA  Unit-root
2 INDEC  CPI inflation = —-  Trend
3omme O nd ey T - Trend
4 INDEC Industrial employment log SA  Unit-root
5 INDEC Construction employment log SA  Unit-root
6 INDEC Retail trade employment log SA Stationary
7 BCRA M2 monetary aggregate log SA  Unit-root
S womn Multilateral nominal log B .

exchange rate
9 BCRA 30 to 59-day deposit rate - - Unit-root
10 INDEC Irrgl(}))ggtss of intermediate log SA  Unit-root
11 INDEC Total exports log SA  Unit-root
12 UTDT Consumer confidence index - -~ Unitroot
13 INDEC Monthly supermarket sales log SA  Unit-root
14 AFCP Cement sales log SA  Unit-root
15 MINEM  Asphalt sales log - Stationary
16 MERVAL Stock market index log —  Unitroot
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Annex B. Results characteristics

SMALL BVAR CHARACTERISTICS

Endogenous variables: Inflation, interest rate, real activity
Exogenous variables: Constant, dummy 2016-11
Estimation sample: July 2004 to July 2017
Sample size (omitting initial 156

conditions):
Number of lags included 1

in regression:
Prior: Normal-Wishart
Autoregressive coefficient: 0
Overall tightness: 0.23
Lag decay: 2
Exogenous variable tightness: 1

SMALL BVAR INFLATION EQUATION COEFFICIENT VALUES

Median SD b ub
INF(-1) 0.468 0.066 0.338 0.598
I(-1) 0.901 0.640 -0.356 2.157
Y(-1) 2.631 3.500 -4.237 9.499
Constant 0.280 0.071 0.140 0.420
d112016 -0.197 0.144 -0.479 0.086

Sum of squared residuals: 91.05
R-squared: 0.291
Adj. R-squared: 0.272
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LARGE BVAR CHARACTERISTICS

Inflation, interest rate, real activity, multilateral
exchange rate, industrial employment,
cement sales, asphalts sales, imports
Endogenous variables of intermediate goods, total exports, M2,
core inflation, construction employment,
consumer confidence index, supermarket
sales, stock market index

Exogenous variables Constant, dummy 2016-11
Estimation sample July 2004 to July 2017
Sample size 156
Number of lags 1
Prior Normal-Wishart
Autoregressive 0

coefficient
Overall tightness 0.05
Lag decay 2

Exogenous variable
tightness
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LARGE BVAR INFLATION EQUATION COEFFICIENT VALUES

Median SD LB UB
INF(-1) 0.145 0.045 0.057 0.234
I(-1) 0.436 0.407 -0.362 1.235
Y(-1) 1.177 2.131 -3.005 5.359
E(-1) 7.261 3.431 0.528 13.994
EMPI(-1) 16.644 11.611 -6.143 39.431
CEM(-1) -0.680 0.556 -1.771 0.410
ASPH(-1) 0.083 0.411 -0.723 0.888
IMP(-1) 0.125 0.477 -0.810 1.061
EXP(-1) 0.091 0.491 -0.873 1.055
M2(-1) 4.093 2.410 -0.637 8.823
INFC(-1) 0.183 0.047 0.091 0.275
EMPC(-1) -1.452 2.933 -7.207 4.303
1cc(-1) -0.011 0.013 -0.036 0.013
SUP(-1) 2.243 1.322 -0.351 4.837
STK(-1) 0.133 1.110 -2.045 2.310
Constant 0.056 0.039 -0.021 0.132
d112016 -0.014 0.042 -0.096 0.067

Sum of squared residuals: 89.33
R-squared: 0.304
Adj. R-squared: 0.224
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