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Abstract

During the year 2016, the Banco Central de la República Argentina has be-
gun to announce inflation targets. In this context, providing the authorities 
of good estimates of relevant macroeconomic variables turns out to be crucial 
to make the pertinent corrections in order to reach the desired policy goals. This 
paper develops a group of models to forecast inflation for Argentina, which 
includes autoregressive models, and different scale Bayesian vars (bvar), 
and compares their relative accuracy. The results show that the bvar model 
can improve the forecast ability of the univariate autoregressive benchmark’s 
model of inflation. The Giacomini-White test indicates that a bvar performs 
better than the benchmark in all forecast horizons. Statistical differences 
between the two bvar model specifications (small and large-scale) are not 
found. However, looking at the rmses, one can see that the larger model 
seems to perform better for larger forecast horizons.
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1. INTRODUCTION

Several long-term nominal commitments such as labor contracts, 
mortgages and other debt are widespread features of modern 
economies. Forecasting how the general price level will evolve 

over the life of a commitment is an essential part of private sector 
decision-making.

The existence of long-term nominal obligations is also among 
the primary reasons economists generally believe that monetary 
policy is not neutral, at least over moderate horizons.

Central banks aim is to keep inflation stable, and perhaps also 
to keep output near an efficient level. With these objectives, the New 
Keynesian model makes explicit that optimal policy will depend 
on optimal forecasts (e.g., Svensson, 2005), and further, that policy 
will be most effective when it is well understood by the public.

Under inflation targeting the central banks generally released fore-
casts in quarterly Inflation Reports in a way to be more transparent 
in their actions. The costs and benefits of transparency are widely 
debated, but the need for a central bank to be concerned with infla-
tion forecasting is broadly agreed. In short, inflation forecasting is of 
foremost importance to households, businesses, and policymakers.

During the year 2016, the Banco Central de la República Argen-
tina (bcra) has begun to announce inflation targets. In this context, 
providing the authorities of good estimates of relevant macroeco-
nomic variables turns out to be crucial to make the pertinent cor-
rections in order to reach the desired policy goals.

A standard tool in macroeconomics that is widely employed in fore-
casting is vector autoregressive (var) analysis. vars are flexible time 
series models that can capture complex dynamic relationships among 
macroeconomic aggregates. However, their dense parameterization 
often leads to unstable inference and inaccurate out-of-sample fore-
casts, particularly for models with many variables, due to the estima-
tion uncertainty of the parameters.

Litterman (1980) and Doan, Litterman, and Sims (1984) have pro-
posed to combine the likelihood function (the data) with some infor-
mative prior distributions (the researcher’s belief about the values 
of coefficients) to improve the forecasting performance of var mod-
els, introducing a Bayesian approach into var modeling.
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In any Bayesian inference, a fundamental yet challenging step 
is prior specification, which influences posterior distributions of the 
unknown parameters and, consequently, the forecasts (Geweke, 
2005). Fortunately, the literature has proposed some methodologies 
to set how informative the prior distributions should be.

Regarding prior selection, Litterman (1980) and Doan, Litter-
man, and Sims (1984) set the tightness of the prior by maximizing 
the out-of-sample forecasting performance of a small-scale model. 
Many authors follow this strategy, such as Robertson and Tallman 
(1999) and Wright (2009), and Giannone et al. (2014), who minimize 
the root mean square error (rmse) of the forecasts.

On the other hand, Banbura et al. (2008) propose to control 
the overfitting caused by the considerable number of variables in the 
model, by selecting the shrinkage of the coefficients in such a way 
as to give an adequate fitting in-sample. Within this second selection 
strategy, we can find authors such as Giannone et al. (2012), Bloor 
and Mathenson (2009), Carriero et al. (2015) and Koop (2011).

Banbura, Giannone, and Reichlin (2008) showed that, by ap-
plying Bayesian var methodology, they were able to handle large 
unrestricted vars models and therefore they demonstrated that 
var framework can be applied to empirical problems that require 
the analysis of more than a few sets of time series. The authors showed 
that a Bayesian var is a viable alternative to factor models or panel 
vars for analysis of large dynamic systems.

This paper develops a group of models to forecast inflation for Ar-
gentina, which includes autoregressive models, and different scale 
Bayesian vars (bvar), and compares their relative accuracy. 

The paper is organized as follows: Section 2 presents the method-
ological aspects related to the application of Bayesian analysis in a 
var framework, Section 3 presents a brief description of the data, 
Section 4 goes through the empirical results, and finally, Section 
5 concludes.

2. BAYESIAN var METHODOLOGY

A var model has the following structure

  1  	 εε= + + + +− −y c B y B y ,t t p t p t1 1
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where ty  is a n 1×  vector of endogenous variables, εε ΣΣN 0( , )t  is a 
n 1×  vector of exogenous shocks, c is a n 1×  vector of constants, 1B  
to pB  are n n×  matrices, and ΣΣ  is n n×  covariance matrix.

The bvar coefficients are a weighted average of the prior mean 
(researcher’s belief) and the maximum likelihood (ml) estimators 
(inferred from the data), with the inverse covariance of the prior 
and the ml estimators as weights.

Consider the fol low ing poster ior distr ibution for the 
var coefficients

  2  	 ββ βΩ Ωβ ξ−−11∼N ( , )0

where the vector ββ0  is the prior mean (whose elements will represent 
the coefficient in Equation 1, the matrix Ω is the known variance 
of the prior, and ξ  is a scalar parameter controlling the tightness 
of the prior information. Even though Ω could have many shapes, 
gamma and Wishart distributions are frequently used in the litera-
ture, since they ensure a normally distributed posterior.1

The conditional posterior of ββ  can be obtained by multiplying 
the prior by the likelihood function. The posterior takes the form

  3  	 ββ ββ ξ ξ( )∼y VN, ˆ( ), ˆ( ) ,

where

  4  	 ββ ββξ ξ( )≡ vecˆ( ) ˆ( ) ,

and

  5  	 ΣΣ ΣΣΣ ββξ ξ ξ≡ + +− − − − −B x xx yˆ( ) ( ( ) ) ( ( ) ),1 1 1 1 1
0ʹ ʹ

1	 If the posterior distributions are in the same family as the prior prob-
ability distribution, the prior and posterior are then called conjugate 
distributions.
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  6  	 ΣΣξ ξ≡ +− − −V x xˆ( ) ( ( ) ) .1 1 1ʹ

Vectors y and x represent observed data while ββ0  is a matrix where 
each column corresponds to the prior mean of each equation.

It is important to note that if we choose a large value for ξ , the prior 
will have little weight into the posterior. This translates to large vola-
tility of the prior and not enough information coming from the prior. 
On the other hand, if the ξ  is set to a small value (i.e., close to zero), 
the prior becomes more informative and the posterior mean moves 
towards the prior mean. To see this point, we can express 5 as follows:

  7  	 ββξ ≡ +− −B x yˆ( ) (ˆ[ ) ]0
1

0
1⊗

and

  8  	 ΣΣ= +− − −x xˆ [ ]0
1 1 1⨂ ʹ .

If the second element between brackets in Equation 7 is multiplied 
by −x x x x( ) ( ),1ʹ ʹ  we obtain the following equations:

  9  	 ββ ΣΣξ ≡ +− − −B x x x x x yˆ( ) ˆ[ ] ˆ[ ( ) ]0
1

0
1 1⨂ ʹ ʹ ʹ

  10  	 ββ ΣΣ ββξ ≡ +− −B x x x xˆ( ) ˆ[ ] ˆ[ ( ) ]ols0
1

0
1 ʹ ʹ

As can be seen, the posterior is a weighted average between the pri-
or and the ordinary least square (ols) estimators,2 where the weights 
are the reciprocal of the prior covariance matrix and the reciprocal 
of the ols covariance matrix respectively. As a result, if the informa-
tion contained in the data is good enough to describe the process 

2	 The ols estimators of a var coincide exactly with the ml estimators 
conditional on the initial values.
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behind it, the posterior will move towards the ols estimators. How-
ever, it is important to underscore that, even if the available series 
are adequate to describe the data generating process, the researcher 
could still formulate a hypothesis about the distribution of the pa-
rameters based on his own beliefs. That would imply ignoring the in-
formation contained in the data, and usually that kind of decisions 
are based on strong beliefs.

The issue mentioned in the last paragraph demonstrates the need 
to be cautious about choosing the prior mean and the hyperpriors. 
In the following subsections, these aspects are discussed in more 
detail.

2.1 Level or Growth Rate

It is unclear a priori whether transforming variables into their growth 
rates can enhance the forecast performance of a bvar model. On one 
hand, the level specification can better accommodate the existence 
of long-run (cointegrating) relationships across the variables, which 
would be omitted in a var in differences. On the other hand, Cle-
ments and Hendry (1996) have shown that in a classical framework, 
differencing can improve forecasting performance in the presence 
of instability.

There has been little effort in the bvar literature to compare speci-
fications in levels versus differences. Carriero et al. (2015) work with 
this specific topic and found that models in growth rates generally 
yield more accurate forecasts than those obtained from the models 
in levels. However, we can find both approaches in the literature. 
Following the Litterman (1986) tradition, some authors considered 
bvars with variables in levels (e.g., Banbura et al., 2008; Giannone 
et al., 2014, and Giannone et al., 2012). Other authors used bvars with 
variables in differences or growth rates (e.g., Clark and McCracken, 
2007, and Del Negro et al., 2004).

As mentioned above, there is no apparent reason to opt for series 
in levels or in differences to work with; nevertheless, choosing a rep-
resentation ex-ante, gives us information about the characteristics 
of the prior distribution (values of the mean prior). For example, 
working with variables in differences implies that the persistence 
of those variables should be low, and that one should impose a num-
ber close to zero as a prior mean of the first lag, denoting low persis-
tence in the series.
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Since it is a good practice to start with some idea about the value that 
the prior could take and encouraged by the evidence found by Carri-
ero et al. (2015), we have opted to work with variables in differences.

In the next subsection, we will treat the variance of the prior as an-
other aspect of prior distribution.

2.2 Choice of Hyperparameters and Lag Length Strategy

To select the hyperparameters and the lag length we will follow 
the strategy suggested by Banbura et al. (2008), Carriero, et al. (2015) 
and Giannone et al. (2012). Suppose, that a model is described by a 
likelihood function p |y( )θ  and a prior distribution θθγγp ( ), where θθ  
is a vector parameter of the model and γγ  is a vector of hyperparam-
eters affecting the distribution of all the priors of the model. It is 
natural to choose these hyperparameters by interpreting the model 
as a hierarchical one, i.e. replacing θθγγp ( ) with θθ γγp( ) and evaluating 
their posterior (Berger, 1985; Koop, 2003). In this way, the posterior 
can be obtained by applying Bayes’ law

  11  	 γγ γγ γγ≈y yp pp( ) ( ) ( ),

where γγp( )  is the density of the hyperparameters and γγyp( ) is the 
marginal likelihood. In turn, the marginal likelihood is the density 
that comes from the data when the hyperparameters change–in oth-
er words, the marginal likelihood can be obtained after integrating 
out the uncertainty about the parameters in the model,

  12  	 ∫γγ θθ γγ θθ γγ θθ=y yp p p d( ) ( , ) ( ) .

For every conjugate prior, the density γγ yp( )  can be computed 
in closed form. To obtain the Bayesian hierarchical structure, it is 
necessary to obtain the distribution of θθp( )  by integrating out the 
hyperparameters

  13  	 ∫θθ θθ γγ ππ γγγ=p p d( ) ( , ) ( ) .
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More precisely, we can find different values of the prior distribu-
tion from different hyperparameter values and, in this way, we can 
represent the posterior as:

  14  	 θθ γγ θθ γγ θθ γγ γγ=y yp p p p( , ) ( , ) ( , ) ( ).

The marginal likelihood should be sufficient to discriminate 
among models; in this sense, we can choose models with differ-
ent hyperparameters and different likelihood specification (more 
precisely, lags length structure). To make this point operational, 
we estimate different models, following Giannone et al. (2012), 
who introduce a procedure allowing to optimize the values of the hy-
perparameters that maximize the value of the marginal likelihood 
of the model. This implies that the hyperparameter values are not 
set a priori but are estimated.

Then the marginal likelihood can be estimated for every com-
bination of hyperparameter values within specified ranges and for 
different lag length structures, and the optimal combination is re-
tained as the one that maximizes that value.

2.3 Comparison Strategy

In this subsection, we present some details about our strategy for mod-
el comparison. We will mention the steps that we will follow to do 
it and then give more details about the predictive ability tests used 
for comparison:

a)	 Estimate a univariate ar model.

b)	 Compute the relative rmse to the ar from (a).

c)	 Compute the relative rmse to the bvar.3

d)	 Run the test of Giacomini and White (2006) to compare both 
models.

Our benchmark is a univariate model. This means that we have 
at hand different statistical measures that cover both the frequentist 

3	 The mean of the predictive density is considered.
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and the Bayesian approaches. While frequentist literature tends 
to compare the forecasts with actual values, Bayesian literature com-
pares the realized values with the whole posterior predictive density.

The testing methodology of Giacomini and White (2006) con-
sists on evaluating relative forecast accuracy with a Diebold-Maria-
no (1995) like test, but with one central difference: The size of the 
in-sample estimation window is kept fixed, instead of expanding. 
Using the sample observations available at time t, forecasts of τ+yt  
are produced for different t for given τ  periods into the future, with 
rolling windows of estimation with the two models that are being 
compared. The sequences of forecasts are then evaluated accord-
ing to some loss function and then the difference of forecast losses 
is computed. This way, a time series of differences in forecast losses 

θτ+L ( ˆ)t∆  that depends on the estimated parameters is constructed. 
The test then consists on a Wald test on the coefficients of the regres-
sion of that series against a constant, the unconditional version of the 
test in Equation 15, or against other explanatory variables, the con-
ditional version in Equation 16:

  15  	 θ ε= +τ+L ( ˆ) ,t t∆ µ

  16  	 θ β ε= +τ+L X( ˆ) .t t t∆ ʹ

Standard errors may be calculated using the Newey-West covari-
ances estimator, controlling for heteroskedasticity and autocorrela-
tion. In this paper, the unconditional version is used.

The Giacomini-White test4 has many advantages: It captures the ef-
fect of estimation uncertainty on relative forecast performance, it al-
lows for comparison between either nested or non-nested models, 
and, finally, it is quite easy to compute.

4	 See chapter 17 of the book by Hashimzade and Thornton (2013) for a 
detailed discussion about this test. 
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2.4 Model Specification

We follow Banbura et al. (2008) and analyze two var models that in-
corporate variables of special interest, including indicators of real 
economic activity, consumer prices, and monetary variables. We con-
sider the following two alternative models: 

Small-scale model. This is a small monetary var including three 
key variables:

a)	 Prices: We used the consumer price index constructed by the 
Instituto Nacional de Estadística y Censos de la República Argenti-
na (indec). After December 2006 until July 2012, the previous 
series is linked with the evolution of the consumer price index 
provided by the Instituto Provincial de Estadísticas y Censos 
de San Luis and, after July 2012, series is again linked with 
the evolution of the consumer price index of the city of Bue-
nos Aires.5

b)	 Economic activity: We used a monthly economic activity indi-
cator known as emae (Estimador Mensual de Actividad Eco-
nómica) published by the indec. The emae is based on the 
value added for each activity at a base price plus net taxes (wi-
thout subsidies), and it uses weights provided by Argentina’s 
National Accounts (2004). It tries to replicate quarterly gdp at 
a monthly frequency.

c)	 Interest rate: We used data from the bcra on 30 to 59-day fixed 
term deposit rates.

Large-scale Model. In addition to the variables included in the small-
scale model, this version also includes the rest of the variables in the 
data set. These are detailed in the next section.

In September 2016, Argentina transitioned to an inflation tar-
geting regime. This could generate a structural break in the mean 
and variance. To account for this possible change in the mean of the 

5	 From December 2006 to October 2015, the index by the indec pre-
sented severe discrepancies with provincial and private price index, 
and hence was discarded for that period.
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process, we incorporate a dummy variable in both specifications 
(Marcelino and Mizon, 2000).6

As we compare models of different sizes, we need a strategy on how 
to choose the shrinkage hyperparameter as models become larger. 
As the dimension increases, we want more shrinkage, as suggested 
by the analysis in De Mol et al. (2008) to control for overfitting. We set 
the tightness of the prior for the model to have better in-sample fit; 
in this way, we are shrinking more in a larger dimension model.

3. DATA

Our data set is composed of a group of 16 monthly macroeconomic 
variables of Argentina available on a monthly frequency. Sources 
of the series, the transformations did on them and their stationar-
ity characteristics are described in the Annex. 

4. RESULTS

4.1 Estimation of the bvar Model

4.1.1 The Optimal Hyperparameters
We work with a Normal-Wishart bvar specification. In this type 
of specification, there are two hyperparameters and two param-
eters. We estimate the overall tightness λ ,1  lag decay λ ,3  and the 
lag length as we have described in Section 2.2, and then we impose 
the value of the prior mean (the autoregressive coefficient) equal 
to zero as discussed earlier.

The hyperparameter of the overall tightness λ1  is the standard 
deviation of the prior of all the coefficients in the system other than 
the constant. In other words, it determines how all the coefficients 
are concentrated around their prior means.

The term λ3  is a decay factor and λ
L1 ( )3  controls the tightness 

on lag L relative to the first lag. Since the coefficients of higher order 

6	 In the Annex, we show the posterior estimation of the whole sample 
to see the effect of this. We controlled the change in the mean due the 
transition to an inflation targeting regime and indeed obtained a sig-
nificant coefficient in both models.
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lags are more likely to be close to zero than those of lower order lags, 
the prior for the standard deviations of the coefficients decrease 
as the lag length increases. The values usually used in the literature 
are 1 or 2, so we settle for λ = 2.3

The prior variance of the parameters of ξββ̂( ) is set according to:

  17  	 σ
σ

λ
λij

j L
2

2
1

21
3

=

















where σ j
2  denotes the ols residual variance of the autoregressive 

coefficient for variable j, λ1  is an overall tightness parameter, L is 
the current lag, and λ3  is a scaling coefficient controlling the speed 
at which coefficients for lags greater than 1 converge to 0.

For exogenous variables, we define the variances as:

  18  	 σ λ λ2
1 4

2= ( )

The results for the hyperparameters and prior means of the small 
and the big scale model are shown in Table 1. All the hyperparameters 
are equal for both type of models except for the hyperparameter λ .1

The characteristics of our hyperparameters after the optimiza-
tion procedure is as follow:

Table 1

LIST OF HYPERPARAMETER VALUES

Hyperparameters values Large-scale model Small-scale model

Autoregressive coefficient: 0 0

Overall tightness ( ).λ1
0.05 0.23

Lag decay ( ):λ3
2 2

Exogenous variable tightness 1 1

Lag length 1 1
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The hyperparameter λ1  is equal to 0.05 for the large-scale model 
while the hyperparameter λ1  for the small-scale is 0.23. From a prac-
tical point of view, this means that the true value of the coefficients 
estimated (posterior) is probably to be farther from the prior mean 
in the small-scale model than in the large-scale one. 

Another aspect to consider about λ1  is the fact that this hyperpa-
rameter impacts on the distribution of the parameters of lagged en-
dogenous and exogenous variables of each equation in the system. 
In this sense, with more shrinkage, for example, it is less probable 
that the posterior coefficients of the lagged endogenous and exog-
enous variables depart from the prior.

As can see in Table 1, the posterior coefficients of the variables 
in the large-scale model are less probable to depart from the prior 
than the small-scale ones. Models with lots of variables will tend 
to have a better in-sample fit even when λ1  is set to loose value.

The posteriors obtained for the small- and the large-scale mod-
el of the inflation equation in each type of model are shown in the 
Annex. 

4.1.2 Forecasting Exercise
Our forecasting exercise is conducted in the following way. We esti-
mate the hyperparameters considering the whole sample, through 
the maximization of the marginal likelihood; and then, we compute 
the forecasts.

As we mentioned before, the data set goes from January 2004 
to July 2017. We compute one-, three- and six-step-ahead forecasts 
with rolling windows. The size of the estimation sample is the same 
for each forecast horizon. Out-of-sample forecast accuracy is mea-
sured in terms of rmse of the forecasts. Therefore, we obtained three 
rmses for each model.

Relative forecast accuracy is analyzed in Table 2, by computed 
the different combinations of rmse ratios. On average, the bvar pres-
ents better accuracy than the benchmark independently of the fore-
cast horizon. For immediate horizons, the small-scale model slightly 
outperforms the larger one, but the large-scale model outperforms 
the small one for further forecast horizons.
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In the next subsection, we analyze these results with a Giacomi-
ni-White test. 

4.2 Forecast Evaluation

To evaluate the predictive performance of the different models, 
we used the tests described earlier. Each column of Table 3 contains 
the probability value of Giacomini-White test statistic for the differ-
ent models.

Table 2

RELATIVE FORECAST ACCURACY

One-step-ahead Three-steps-ahead Six-steps-ahead

Ratio 
small 
model-

benchmark

Ratio 
large 

model-
benchmark

Ratio 
large 

model-
small 
model

Ratio 
small 
model-

benchmark

Ratio 
large 

model-
benchmark

Ratio 
large 

model-
small 
model

Ratio 
small 
model-

benchmark

Ratio 
large 

model-
benchmark

Ratio 
large 

model-
small 
model

0.77 0.90 1.69 0.78 0.77 1.02 0.87 0.82 0.94

Table 3

GIACOMINI-WHITE TEST 

Forecast horizon
Large bvar vs. 

benchmark
Small bvar vs. 

benchmark
Difference between 

bvar models

One-step-
ahead 0.03 0.01 0.29

Three-steps-
ahead 0.00 0.00 0.49

Six-steps-
ahead 0.09 0.05 0.41
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The result of the Giacomini-White test shows that, at a 5% of sig-
nificance level, the large bvar model outperforms the benchmark 
for one step and three steps ahead forecast horizon,  while the small 
bvar outperforms the benchmark at a 5% significance level for all 
forecast horizons. The last column of the table shows the Giacomini-
White test applied to the differences in predictive ability between 
the small- and large-scale bvar models, but in this case, the differ-
ences are not significant for all forecast horizons.

5. CONCLUSIONS

This paper assesses the performance of Bayesian var to forecast in-
flation in Argentina. We considered a Normal-Wishart bvar specifi-
cation for a small- and a large-scale model of differentiated variables 
setting the prior mean according to standard recommendations 
in previous studies. The overall tightness hyperprior and the 
lag length of the different models were set by optimization of the 
marginal likelihood. We found that large-scale models have nar-
rower priors, giving more weight to the priors mean than small-
scale models.

Overall, the results show that the bvar model can improve the fore-
cast ability of the univariate autoregressive benchmark’s model of in-
flation. The Giacomini-White test indicates that a bvar performs 
better than the benchmark in all forecast horizons. Statistical differ-
ences between the two bvar model specifications (small and large-
scale) are not found. However, looking at the rmses, one can see that 
the larger model seems to perform better for larger forecast horizons.
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Annex A. Data Characteristics

Table A.1

LIST OF ENDOGENOUS VARIABLES

Source Description Transf. Characteristics

1 indec emae log sa Unit-root

2 indec cpi inflation – – Trend

3 indec Core cpi inflation (ex. 
seasonal and regulated) – – Trend

4 indec Industrial employment log sa Unit-root

5 indec Construction employment log sa Unit-root

6 indec Retail trade employment log sa Stationary

7 bcra M2 monetary aggregate log sa Unit-root

8 bcra Multilateral nominal 
exchange rate log – Unit-root

9 bcra 30 to 59-day deposit rate – – Unit-root

10 indec Imports of intermediate 
goods log sa Unit-root

11 indec Total exports log sa Unit-root

12 utdt Consumer confidence index – – Unit-root

13 indec Monthly supermarket sales log sa Unit-root

14 afcp Cement sales log sa Unit-root

15 minem Asphalt sales log – Stationary

16 merval Stock market index log – Unit-root
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Annex B. Results characteristics

Table B.1

SMALL bvar CHARACTERISTICS

Endogenous variables: Inflation, interest rate, real activity

Exogenous variables: Constant, dummy 2016-11

Estimation sample: July 2004 to July 2017

Sample size (omitting initial 
conditions): 156

Number of lags included 
in regression: 1

Prior: Normal-Wishart

Autoregressive coefficient: 0

Overall tightness: 0.23

Lag decay: 2

Exogenous variable tightness: 1

Table B.2

SMALL bvar INFLATION EQUATION COEFFICIENT VALUES

Median sd lb ub

inf(–1)
I(–1)
Y(–1)
Constant
d112016

0.468
0.901
2.631
0.280

–0.197

0.066
0.640
3.500
0.071
0.144

0.338
–0.356
–4.237

0.140
–0.479

0.598
2.157
9.499
0.420
0.086

Sum of squared residuals: 91.05
R-squared: 0.291
Adj. R-squared: 0.272
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Table B.3

LARGE bvar CHARACTERISTICS

Endogenous variables

Inflation, interest rate, real activity, multilateral 
exchange rate, industrial employment, 

cement sales, asphalts sales, imports 
of intermediate goods, total exports, M2, 
core inflation, construction employment, 
consumer confidence index, supermarket 

sales, stock market index 

Exogenous variables Constant, dummy 2016-11

Estimation sample July 2004 to July 2017

Sample size 156

Number of lags 1

Prior Normal-Wishart

Autoregressive 
coefficient 0

Overall tightness 0.05

Lag decay 2

Exogenous variable 
tightness 1
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Table B.4

LARGE BVAR INFLATION EQUATION COEFFICIENT VALUES

Median sd lb ub

inf(–1)

I(–1)

Y(–1)

E(–1)

empi(–1)

cem(–1)

asph(–1)

imp(–1)

exp(–1)

M2(–1)

infc(–1)

empc(–1)

icc(–1)

sup(–1)

stk(–1)

Constant

d112016

0.145

0.436

1.177

7.261

16.644

–0.680

0.083

0.125

0.091

4.093

0.183

–1.452

–0.011

2.243

0.133

0.056

–0.014

0.045

0.407

2.131

3.431

11.611

0.556

0.411

0.477

0.491

2.410

0.047

2.933

0.013

1.322

1.110

0.039

0.042

0.057

–0.362

–3.005

0.528

–6.143

–1.771

–0.723

–0.810

–0.873

–0.637

0.091

–7.207

–0.036

–0.351

–2.045

–0.021

–0.096

0.234

1.235

5.359

13.994

39.431

0.410

0.888

1.061

1.055

8.823

0.275

4.303

0.013

4.837

2.310

0.132

0.067

Sum of squared residuals: 89.33
R-squared: 0.304
Adj. R-squared: 0.224
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