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Explicit formulae for the valuation of European options with price
impacts
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Abstract

In this work, we analyze the effect of trading a large position of vanilla European options where
the underlying price S follows a multi-period binomial model. Due to the large size of the trans-
action, we expect that not only the price of the derivative but also the price of the underlying S,
should be subject to price impacts. As a byproduct, the valuation of derivatives should be analyzed
taking into account the latter effects. In order to do so, besides assuming that the price process
S can be modeled using a multi-period binomial model, we also assume that the trading impacts
affect the price S in a multiplicative way. Furthermore, our analysis is carried out in discrete time
to better trace the effects of price impacts, and conclude for instance, that the strike price should be
itself a function of the size of the trade, and the parameterized market impacts. We provide explicit
formulae for the price of European options under market impacts as well as numerical examples to
illustrate our results. Code in the statistical package R can be provided upon request.
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1 Introduction

Unlike what is usually assumed about a small agent in many economic models that takes prices as
given, this work deals with the opposite idea: a big agent (trader, investor, underwriter, buyer, or
vendee) that can affect the price when he trades a large number of units of securities. This leads to the
concept of price impact, which is a common and well-analyzed topic in several market microstructure
models.

We briefly explain the price impact concept by means of a Limit Order Book (LOB). Namely, a
LOB is a data record of orders to sell and buy assets that have not been matched with an order of
immediate execution. The former type is called a limit order, whereas the latter type is known as a
market order. The LOB contains, among other information, a list of prices of certain securities and
the volumes offered at those prices. The volume is an important point in our analysis. If the investor
executes a small market sale (purchase) order of a security when there is a large volume of limit orders
to buy (sell), it is very likely for the market order to be accomplished with the volume of limit orders at
the highest (lowest) buying (selling) price. While for an order with a very large volume, it is possible
for the agent to descend (escalate) the price levels until his order is fully achieved.

In general, there are at least two kinds of impacts in which the investor can modify the price: tem-
porary and permanent impact . Temporary impact refers to a short-term imbalance between demand
and supply caused by our trading. Such trades lead to temporary price deviations away from equi-
librium. On the other hand, permanent impact refers to a change in the equilibrium price caused by
trading. The latter reveals a change in the perception of the other agents over long-term expectations.

This work is focused on the outstanding effects that these two impacts have on the valuation of
derivatives in discrete time. It is a known fact that under mild assumptions, a financial derivative
can be priced using a replicating portfolio. In turn, financial institutions use these portfolios to hedge
their risk. The analysis of the price impacts on the underlying assets should also be useful to analyze
changes in the price of the derivatives, caused by the purchase of the so-called replicating portfolio.
In this work, we analyze the effect of trading a large position M of financial derivatives where the
underlying price S follows a multi-period binomial model. Under this scenario, we will show that if
an investor hedges a large position of vanilla European options with the replicating portfolio, then
both the price of the underlying asset S, and the price of the derivative will be affected due to market
impact.

Regarding the concept of price impact, we refer to Bertsimas and Lo [4], as well as to the work of
Almgren and Chriss [1, 2]. With respect to the literature on the pricing and hedging of derivatives
with market impact and its link with optimal execution, see for instance Almgren and Li [3], Cetin,
Jarrow and Protter [6] or Guéant and Pu [8]. In particular, in Gökay and Soner [7] the authors propose
an algorithm to calculate the option’s price. Alternatively in this work, we derive explicit formulae
to compute the price of European options under the assumption of multiplicative price impacts. An
interesting consequence of our methodology is that in the case of call and put options, the strike price
becomes itself a deterministic process which in turn is a function of the size of the trade.

The rest of the paper is organized as follows. In the next section, we describe our price model with
both impacts (temporary and permanent) indicating how these affect the price. Section 3 is devoted
to the study of price impacts in the case of options (call and put). In particular, we show that the
hedging of a great number of derivatives may lead to a mispricing of the contract if market impact is
not considered, we provide some numerical examples. We conclude this work with some final remarks
in Section 4.

2 The price impact model

We shall denote by αt ∈ R the amount of shares traded at time t. In the case in which αt is positive,
we will say that the trader has executed a purchase of shares. Otherwise, if αt is negative, we will say
that the trader has executed a sale. Also, at time t, we denote by St the price process in the market,
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while Ŝt denotes the actual price at which the investor is trading.
We assume that there is some price impact, which affects the price proportionally to its level.

Namely, if αt units of asset S are traded at an observed initial price of, say, St = 100, and if we assume
that this trading affects the price leading it to Ŝt = 105, then any other initial price that is higher, say
St = 1000, will increase to the level of Ŝt = 1050 due also to the impact. Under this assumption, the
return Ŝt−St

St
is assumed to be proportional to its logarithmic approximation, i.e., log

(
Ŝt
St

)
. Thus, the

price follows the dynamic

log

(
Ŝt
St

)
= γαt for t = 0, 1, . . . ,

where γ > 0 denotes an arbitrary impact, and consequently

Ŝt = Ste
γαt for t = 0, 1, . . . . (2.1)

It is worth mentioning that this type of function, which is related to price impact, has been previously
considered for continuous-time models by Cetin et. al. [6]. In particular, the authors put forward the
so-called supply curve, where the traders, not being price takers anymore, pay an amount depending
on the quantity they are trading.

Let us now distinguish between the two types of impact we shall be working within the remainder.

Temporary price impact: The first impact refers to the case when the trading only affects the
instant when it is executed and its influence in the future is negligible. This impact is called temporary
price impact (or simply temporary impact) and will be parameterized by λ (γ = λ in this case). For
example, if we consider a trade of α0 shares at time t = 0 and there is no trade at t = 1, then we have
the following:

Ŝ0 = S0e
λα0 = seλα0 where S0 = s,

Ŝ1 = S1.

We see that the impact of the first period is not considered for the next periods.

Permanent price impact: When more than one trade is executed in a period of time N , part of the
former trades still affect the subsequent ones. For instance, agents that observe a large volume order
may reconsider their expectations over the price of the security. We can model this fact by letting the
previous impacts prevail during the whole sequence of times T = {0, 1, . . . N}. We refer to this impact
as permanent price impact (or permanent impact) and will be parameterized by β (γ = β in this case).
For example, if two trades were made at times t = 0 and t = 1, then the price is affected as follows:

Ŝ0 = seβα0 ,

Ŝ1 =
(
S1e

βα0
)
eβα1 = S1e

βα0+βα1 .

We note that the price S1eβα0 is the one observed before the trade at t = 1 is done. Furthermore, if in
the previous example we analyze the price at t = 1, given that no other trades are made at this time,
we observe the following price

Ŝ1 = S1e
βα0 .

Although it is named permanent, for the purposes of this paper it is sufficient that the impact remains
for the entire interval of time for which the trading is allowed.

In summary, by considering the two price impacts, the price at the t−th period becomes

Ŝt = Ste
λαt+β

∑t
j=0 αj , t = 0, · · · , N.
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3 European option valuation, the binomial model

We first analyze the pricing of vanilla European options when the price impacts are present, and given
that a large trade of derivatives M >> 0 has been carried out in the one-period case. For a brief
summary of the pricing of a derivative in the case in which the price process is Bernoulli, and there is
no price impact, see Appendix A.

3.1 One period case.

The dynamics with price impact. Consider a trader that sells M >> 0 contracts of a financial
derivative of an underlying whose price is S, in a market with price impacts. The price S is a stochastic
process given by

S0 = s, S1 =

{
s · u with probability p
s · d with probability 1− p (3.1)

with 0 < d < u. The underwriter of the contract will determine the fair price of the instrument
constructing a replicating portfolio that contains bonds and the underlying security. In particular, we
will assume that x represents the number of bonds with return rate R and normalized price $1. In
addition, let α0 be the units of the underlying stock traded at t = 0.

Let h = (x, α0) be the replicating portfolio of the derivative. Considering market impacts, the
value of the portfolio at t = 0 equals

V h
0 = x+ α0Ŝ0

= x+ α0se
λα0+βα0 ,

where Ŝ0 corresponds to the effective value of the asset S taking into account the impacts on the price
process, due to the transaction size α0. Notice that we are using the same assumption on α0 as before:
α0 > 0 means that the stock is bought, whereas α0 < 0 means that the stock is sold.

Remark 3.1. Let us assume that the derivative is a vanilla option. Notice that under the assumption
of market impacts, and that the strike price K remains fixed, one can always find an ← a??number
M such that, if an amount M of derivatives are traded, then the option will always be executed. For
example, consider a call option in the one-period binomial model with strike price K, and such that
sd < K < su, i.e.

Φ(sZ) := max{sZeβα0 −K, 0}.

It is straightforward to show that if

α0 >
1

β
log

(
K

sd

)
,

then
sdeβα0 −K > 0,

and, therefore, K < sdeβα0 < sueβα0 . This situation is similar to that of Remark A.1.2, and implies
that, under price impacts, if

M = α0 >
1

β
log

(
K

sd

)
, (3.2)

then, the derivative will always be executed. In order to avoid this situation, we will assume that K
can be negotiated depending on the impacts and α0.

As a consequence of the previous Remark, within our model, we will assume that both the holder
and the underwriter know that there is a price impact. According to this, the strike price will be a
function of this fact, namely K̂ := Keβα0 . First, note that under the previous assumptions, the value
of a call option (A.2) at expiration equals

Φ̂(sZ) := Φ(sZ)eβα0 = max{sZeβα0 −Keβα0 , 0} = max{sZeβα0 − K̂, 0}. (3.3)
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Alternatively, in the case of a put option the contract has payoff

Φ̂(sZ) = max{Keβα0 − sZeβα0 , 0} = max{K̂ − sZeβα0 , 0}. (3.4)

In general, as long as the payoff function is linearly homogeneous, i.e

Φ(δsZ) = δΦ(sZ) ∀ δ > 0, (3.5)

then the inequalities in (A.1) hold since eβα0 ≥ 0.
Next, we have that M · Φ̂ is the value of the total amount of contracts acquired (or sold). Thus, at

time t = 1, the following identities should hold

V h
1 =

{
x(1 +R) + α0se

βα0u = M Φ̂(su)

x(1 +R) + α0se
βα0d = M Φ̂(sd).

(3.6)

Furthermore, as we assume that d < u, now we solve α0 and x from (3.6), to get

α0 =
M

seβα0

Φ̂(su)− Φ̂(sd)

u− d
=

M

seβα0

(Φ(su)− Φ(sd))eβα0

u− d
=
M

s

Φ(su)− Φ(sd)

u− d
, (3.7)

and

x =
M

(1 +R)

uΦ̂(sd)− dΦ̂(su)

u− d
=

M

(1 +R)

(uΦ(sd)− dΦ(su))eβα0

u− d
. (3.8)

From (3.7), we have that:

Put option ⇒ α0 < 0 ⇒ underwriter is selling the stock.
(3.9)

Call option ⇒ α0 > 0 ⇒ underwriter is buying the stock.

Thus, we conclude that the value of the contract at time t = 0 should be:

V h
0 =

M

1 +R

(
(uΦ(sd)− dΦ(su))eβα0

u− d

)
+
Mseλα0+βα0

s

(
Φ(su)− Φ(sd)

u− d

)
=

M

1 +R

(
uΦ̂(sd)− dΦ̂(su)

u− d

)
+
M(1 +R)eλα0

1 +R

(
Φ̂(su)− Φ̂(sd)

u− d

)

=
M

1 +R

[{
(1 +R)eλα0 − d

u− d

}
Φ̂(su) +

{
u− (1 +R)eλα0

u− d

}
Φ̂(sd)

]
. (3.10)

Remark 3.2. • Notice that the measure Q generated by this process

qu =
(1 +R)eλα0 − d

u− d
, qd =

u− (1 +R)eλα0

u− d

yields a sub (resp. super) martingale measure when α0 > 0 (resp. α0 < 0) since the discounted
price process S1, under the new measure Q equals,

1

(1 +R)
EQ[S1|S0] = seλα0

{
≥ s = S0 if α0 > 0
≤ s = S0 if α0 < 0,

in other words, the price process is drifting under Q.

• Observe that the permanent impact affects the valuation just through the new contract function
Φ̂, while the temporary impact is the only one affecting the martingale measure Q. To see this
assume that λ = 0 and observe that there are no changes between (3.10) and the well-known
expression (A.6).
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• On the other hand, by assuming β = 0, the underwriter has to consider the price seλα0 at t = 0,
when he trades α0 shares. This modification on the price is not considered by the holder in t = 1.
This leads to an misvaluation of the derivative.

Example 3.3. Let s = 10, u = 1.2, d = 0.8, λ = 0.001, β = 0 and R = 0. Furthermore, assume the
contract is a call option with strike price K = 11 and the writer of the contract sells M = 10 contracts.
It follows that α0 = 10/4 (the underwriter has to buy 10/4 units of the asset), and thus the call price
per contract, without assuming market impact is

V̄ h
0 = 5.

In contrast, the price assuming market impact is

V h
0 = 5.06258.

Furthermore, when we assume that all the previous parameters remain the same, except for the perma-
nent impact, which is now β = 0.01. Then α0 = 10/4, K̂ = 11.0275, and

V h
0 = 5.07525.

In any case (λ > 0 or β > 0), there is a variation on the call prices when a price impact is considered.

3.2 N periods case.

3.2.1 The model

The reasoning carried out in the one-period case can be applied to a multiperiod binomial model. In
particular, let us denote by Z = {Zt : 1 ≤ t ≤ N} the stochastic process of i.i.d. random variables
defined on a (fixed) probability space (Ω,F ,P), such that for all t, Zt follows a Bernoulli distribution

Zt =

{
u with probability p
d with probability 1− p.

The process Z as described above has 2N different paths. In fact, for any time 0 < t ≤ N there are 2t

different paths that we index with j ∈ {0, 1, . . . 2t − 1}. For example, for N = 3 we have

t = 1 t = 2 t = 3
j = 0→ (Z1, Z2, Z3) = (ddd)

j = 0→ (Z1, Z2) = (dd) j = 1→ (Z1, Z2, Z3) = (ddu)
j = 2→ (Z1, Z2, Z3) = (dud)

j = 0→ (Z1) = (d) j = 1→ (Z1, Z2) = (du) j = 3→ (Z1, Z2, Z3) = (duu)
j = 4→ (Z1, Z2, Z3) = (udd)

j = 1→ (Z1) = (u) j = 2→ (Z1, Z2) = (ud) j = 5→ (Z1, Z2, Z3) = (udu)
j = 6→ (Z1, Z2, Z3) = (uud)

j = 3→ (Z1, Z2) = (uu) j = 7→ (Z1, Z2, Z3) = (uuu)

For each 0 < t ≤ N and j ∈ {0, . . . , 2t − 1} we define

rt(j) :=


j for t = 1

j −
t−1∑
k=1

⌊
j

2t−k

⌋
for t ≥ 2,

(3.11)

where b•c denotes the “floor” function, i.e. bxc = max{m ∈ Z|m ≤ x}.
Observe that rt(j) is the number of times that the process has taken the value u until step t along

the path j.
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Now, we are looking for a self-financing portfolio process Y = {Yt : 0 ≤ t ≤ N} that replicates the
value of the derivative at every node of any path j. To this end, we define an initial value of wealth Y0,
which will be determined later, and we use it to buy a portfolio made up of α0 units of the underlying
asset, and x0 units of the bond, i.e.,

Y0 = x0 + α0se
λα0+βα0 = x0 + α0Ŝ0e

λα0 , (3.12)

where Ŝ0 = seβα0 . We highlight that for this section, the notation Ŝj , for j = 0, . . . , t is used for the
price with permanent impact only, and we write the effect of a temporary impact explicitly when it
corresponds.

For t = 1, we have j ∈ {0, 21 − 1} = {0, 1}, r1(0) = 0 and r1(1) = 1. Thus the wealth Y1 is
described as follows

Y1(1) = x0(1 +R) + α0se
βα0u

= (Y0 − α0Ŝ0e
λα0)(1 +R) + α0Ŝ0u,

and

Y1(0) = x0(1 +R) + α0se
βα0d

= (Y0 − α0Ŝ0e
λα0)(1 +R) + (α0)Ŝ0d,

where we have used the equation (3.12) to express x0 in terms of Y0 and α0.
Additionally, let αt(j) and xt(j) be, respectively, the amount of the underlying, and the number of

bonds that the underwriter holds at stage t along path j. In general, we define recursively forward Y
as

Yt+1(2j + 1) =
(
Yt(j)− αt(j)Ŝt(j)eλαt(j)

)
(1 +R) + αt(j)Ŝt(j)u

(3.13)

Yt+1(2j) =
(
Yt(j)− αt(j)Ŝt(j)eλαt(j)

)
(1 +R) + αt(j)Ŝt(j)d

where

Ŝt(j) = surt(j)dt−rt(j)e
β

t∑
k=0

αk(bj/2t−kc)
, (3.14)

and 2j+ 1 from Yt+1(·) indicates that the transition from t to t+ 1 was generated by Zt+1 = u, whilst
2j was generated by Zt+1 = d. The equations (3.13) are known as wealth equations.

Let V = {Vt; 0 ≤ t ≤ N} be the value process of the derivative that evolves according to the Z
process. This means that for some ωj ∈ Ω, Vt(Z1(ωj), . . . , Zt(ωj)) = Vt(j) represents the value of the
derivative at stage t along path j. Finally, as a consequence of the previous definitions, the value at
time N of this process is the contract function which equals

VN (j) = MΦ

surN (j)dN−rN (j)e
β

N−1∑
k=0

αk(bj/2N−kc)


= Me
β

N−1∑
k=0

αk(bj/2N−kc)
Φ
(
surN (j)dN−rN (j)

)
. (3.15)

3.2.2 Main results: the Algorithm and the Valuation

Next, our task is to show that the portfolio process Y takes the same values as the derivative process
V for each stage t at any path j. For this, we have the following Theorem.
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Theorem 3.4. Consider a N -claim VN = MΦ(SN ) as in (3.15) according to the binomial process Z.
For t ∈ {0, . . . , N} and j ∈ {0, . . . 2t − 1}, let us define recursively backward in time the sequence of
random variables VN−1, VN−2, . . . , V0 by

Vt(j) =
1

1 +R

[
q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j)

]
, (3.16)

where

q1t (j) :=
(1 +R)eλαt(j) − d

u− d
and q0t (j) :=

u− (1 +R)eλαt(j)

u− d
, (3.17)

and αt(j) is given by

αt(j) =
Vt+1(2j + 1)− Vt+1(2j)

Ŝt(j)(u− d)
. (3.18)

Additionally, let us define

xt(j) =
Vt+1(2j)u− Vt+1(2j + 1)d

(1 +R)(u− d)
. (3.19)

If we set Y0 = V0 and define recursively forward in time the portfolio values Y1, Y2, . . . , YN by (3.13),
then we will have

VN (j) = YN (j), ∀ j ∈ {0, · · · , 2N − 1}. (3.20)

Proof. The proof is done by induction. For t = 1, from (3.13) we have

Y1(i) =
(
Y0 − α0Ŝ0e

λα0

)
(1 +R) + α0Ŝ0u

id1−i, for i = 0, 1. (3.21)

As we set Y0 = V0, then we can rearrange the previous equation as

Y1(i) = V0(1 +R) + α0Ŝ0

(
uid1−i − (1 +R)eλα0

)
, for i = 0, 1. (3.22)

Now, we use (3.16) and (3.18) to get

Y1(i) = V0(1 +R) + α0Ŝ0

(
uid1−i − (1 +R)eλα0

)
=

1

1 +R

[
q10(0)V1(1) + q00(0)V1(0)

]
(1 +R) +

V1(1)− V1(0)

Ŝ0(u− d)
Ŝ0

(
uid1−i − (1 +R)eλα0

)
= q10(0)V1(1) + q00(0)V1(0) +

[
V1(1)− V1(0)

](uid1−i − (1 +R)eλα0

u− d

)
Observe that

uid1−i − (1 +R)eλα0

u− d
=


−q10(0) for i = 0

q00(0) for i = 1

Therefore, we have

Y1(i) = q10(0)V1(1) + q00(0)V1(0) +
[
V1(1)− V1(0)

]
−q10(0) for i = 0

q00(0) for i = 1


=


q10(0)V1(1) + q00(0)V1(0)− q10(0)V1(1) + q10(0)V1(0) for i = 0

q10(0)V1(1) + q00(0)V1(0) + q00(0)V1(1)− q00(0)V1(0) for i = 1


=


q00(0)V1(0) + q10(0)V1(0) = V1(0) for i = 0

q10(0)V1(1) + q00(0)V1(1) = V1(1) for i = 1

 = V1(i).
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where we have use the fact that q10(0) + q00(0) = 1 as it can be deduced from (3.17). Thus we have
shown that Theorem 3.4 holds for our base of induction, t = 1.

For the induction step, we assume that (3.20) holds for t < N and show it for t + 1. In addition,
we will show the case of Zt+1 = u, however, the case Zt+1 = d can be proved analogously.

Let

Yt+1(2j + 1) =
(
Yt(j)− αt(j)Ŝt(j)eλαt(j)

)
(1 +R) + αt(j)Ŝt(j)u

= Yt(j)(1 +R) + αt(j)Ŝt(j)
(
u− (1 +R)eλαt(j)

)
,

and by taking the value of αt(j) given by (3.18), we get

Yt+1(2j + 1) = Vt(j)(1 +R) +
Vt+1(2j + 1)− Vt+1(2j)

Ŝt(j)(u− d)
Ŝt(j)(u− (1 +R)eλαt(j)),

where we have used our induction hypothesis, Yt(j) = Vt(j). Then

Yt+1(2j + 1) = Vt(j)(1 +R) +
Vt+1(2j + 1)− Vt+1(2j)

Ŝt(j)(u− d)
Ŝt(j)(u− (1 +R)eλαt(j))

= Vt(j)(1 +R) +

(
Vt+1(2j + 1)− Vt+1(2j)

)(
u− (1 +R)eλαt(j)

u− d

)

= Vt(j)(1 +R) +

(
Vt+1(2j + 1)− Vt+1(2j)

)
q0t (j).

We use (3.16) to get

Yt+1(2j + 1) =
(1 +R)

1 +R

[
q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j)

]
+ q0t (j)Vt+1(2j + 1)− q0t (j)Vt+1(2j)

= q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j) + q0t (j)Vt+1(2j + 1)− q0t (j)Vt+1(2j)

= q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j + 1)

= (q1t (j) + q0t (j))Vt+1(2j + 1) = Vt+1(2j + 1).

In the last equality, we have use the fact that q1t (j) + q0t (j) = 1 as it can be deduced from (3.17).Thus
we have shown Yt+1(j) = Vt+1(j) for any j ∈ {0, . . . , 2t+1 − 1} and t < N , this includes the case
t+ 1 = N , hence we have proved (3.20).

One of the main problems that arise when one begins to determine the values Vt(2j + 1), Vt(2j),
αt(j) and xt(j) using the formulae presented in Theorem 3.4, is that it seems to be a circular argument.
On the one hand, in order to determine αN−1(j), we need the values of VN (2j+1) and VN (2j) (equation
(3.18) with t = N − 1), and on the other hand, these latter values, in the same way, need αt(j) for
t ∈ {0, . . . , N − 1} and j ∈ {0, . . . , 2t − 1} as we see in formula (3.15). This last idea seems to call
for a fixed point argument however formula (3.23), which is presented below, along with the algorithm
presented next solve the problem.

3.2.3 Algorithm to obtain Vt(j), αt(j), xt(j) and K(j).

Let us introduce the formula

V̂t(j) := Vt(j)e
−β
∑t−1

k=0 αk

(⌊
j

2t−k

⌋)
(3.23)

which allows us to write αN−1(j) as

αN−1(j) =
V̂N (2j + 1)− V̂N (2j)

surN−1(j)dN−1−rN−1(j)(u− d)
= M

Φ
(
surN (2j+1)dN−rN (2j+1)

)
− Φ

(
surN (2j)dN−rN (2j)

)
surN−1(j)dN−1−rN−1(j)(u− d)

.

(3.24)
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which only depends on known variables and parameters. In the next step, using (3.17), for t = N − 1,
we can obtain qhN (j), h ∈ {0, 1}, and then we obtain V̂N−1(j) with the formula

V̂N−1(j) =
1

1 +R

[
q1N−1(j)V̂N (2j + 1) + q0N−1(j)V̂N (2j)

]
eβαN−1(j) (3.25)

The next steps consist of solving backward using

αt(j) =
V̂t+1(2j + 1)− V̂t+1(2j)

surt(j)dt−rt(j)(u− d)
, (3.26)

then, we obtain qht (j), h ∈ {0, 1}, with (3.17), and next, we solve the equation

V̂t(j) =
1

1 +R

[
q1t (j)V̂t+1(2j + 1) + q0t (j)V̂t+1(2j)

]
eβαt(j) (3.27)

for t ∈ {0, . . . , N − 2}. Finally, we can solve for Vt(j) using equation (3.23) and get

Vt(j) = V̂t(j)e
β
∑t−1

k=0 αk

(⌊
j

2t−k

⌋)
. (3.28)

The important fact about the steps described before is that αt(j), qht (j) and V̂t(j) (t ∈ {0, . . . , N −
2}, h ∈ {0, 1} and j{0, . . . , 2t}) only depend on variables obtained in the previous steps, t+ 1, . . . , N .

We verify the validity of equations (3.24), (3.25), (3.26), and (3.27) in the Appendix B. The step-
by-step pseudocode is shown next.

3.2.4 Pseudocode

• Obtain values s,R and M

• Choose parameters K,N and the function Φ(·)

• Estimate parameters u, d, λ and β

1. For j ∈ {0, 1, . . . , 2N − 1}, define

V̂N (j) := MΦ
(
surN (j)dN−rN (j)

)
where rN (j) can be computed using (3.11) with t = N

End

2. For t = N − 1, N − 2, . . . , 0

For j ∈ {0, 1, . . . , 2t − 1}
I. Compute rt(j) as in (3.11)

II. Compute

αt(j) =
V̂t+1(2j + 1)− V̂t+1(2j)

surt(j)dt−rj(j)(u− d)

q1t (j) =
(1 +R)eλαt(j) − d

u− d
and q0t (j) = 1− q1t (j)

V̂t(j) =
1

(1 +R)

[
q1t (j)V̂t+1(2j + 1) + q0t (j)V̂t+1(2j)

]
eβαt(j)

End
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End

3. For t = N, . . . , 0

For j ∈ {0, . . . , 2t − 1}
Compute

Vt(j) = V̂t(j)e
β
∑t−1

k=0 αk

(⌊
j

2t−k

⌋)
End

End

4. For j ∈ {0, 1, . . . , 2N − 1} compute K(j) = Ke
β
∑N−1

k=0 αk

(⌊
j

2N−k

⌋)
End

3.2.5 Valuation of an Option under Price Impacts

Finally, with the results in the previous Theorem 3.4, we can now explicitly compute the value of an
option as follows:

Proposition 3.5. The price of the derivative security equals

V0(0) = M
(1+R)N

2N−1∑
j=0

eβ N−1∑
k=0

αk(bj/2N−kc)
Φ
(
surN (j)dN−rN (j)

) N∏
k=1

q
mod (bj/2N−kc,2)

k−1
(
bj/2N−(k−1)c

)
= 1

(1+R)N

2N−1∑
j=0

[
VN (j)

N∏
k=1

q
mod (bj/2N−kc,2)

k−1
(
bj/2N−(k−1)c

)]
, (3.29)

where mod (c, d) stands for the modulo operation which returns the remainder of the division c/d.

Proof. We will prove that the formula

V0(0) =
1

(1 +R)t

2t−1∑
j=0

[
Vt(j)

t∏
k=1

q
mod (bj/2t−kc,2)

k−1

(
bj/2t−(k−1)c

)]
(3.30)

holds for every 1 ≤ t ≤ N . In order to achieve our goal, we will use induction and prove that (3.30)
holds for t = 1.

Recall (3.16),

Vt(j) =
1

1 +R

[
q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j)

]
.

If we substitute t = 0 in the previous equation, we obtain

V0(0) =
1

1 +R

[
q10(0)V1(1) + q00(0)V1(0)

]
. (3.31)

Remark 3.6. We use t = 0 in order to get V0(0) so we can get an expression for left hand side of
(3.30), but we return to the original value t = 1 in the next steps.

Now we use the value t = 1 and for j = 0, there are two elements in the sum, say 2j + 1 = 1 and
2j = 0. We define ` ∈ {0, 1} and compute, for k = 1, the following expressions

`

2t−k
,

⌊
`

2t−k

⌋
,

`

2t−(k−1)
,

⌊
`

2t−(k−1)

⌋
, and mod

(⌊
`

2t−k

⌋
, 2

)
.
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For ` = 0, those values are respectively

0

21−1
= 0,

⌊
0

21−1

⌋
= 0,

0

21−(1−1)
= 0,

⌊
0

21−(1−1)

⌋
= 0, and mod

(⌊
0

21−1

⌋
, 2

)
= 0,

whilst for ` = 1, they are

1

21−1
= 1,

⌊
1

21−1

⌋
= 1,

1

21−(1−1)
=

1

2
,

⌊
1

21−(1−1)

⌋
= 0, and mod

(⌊
1

21−1

⌋
, 2

)
= 1.

Thus we can express (3.31) as

V0(0) =
1

1 +R

[
q

mod (b1/21−1c,2)
1−1

(⌊
1

21−(1−1)

⌋)
V1(1) + q

mod (b0/21−1c,2)
1−1

(⌊
0

21−(1−1)

⌋)
V1(0)

]

=
1

1 +R

21−1∑
j=0

[
V1(j)q

mod (bj/21−1c,2)
1−1

(⌊
j

21−(1−1)

⌋)]
,

which shows that (3.30) is satisfied for our base of induction. Henceforth, we assume that (3.30) holds
for 1 ≤ t < N in order to prove for t+ 1.

Due to (3.16), we can express

Vt(j) =
1

1 +R

(
q1t (j)Vt+1

(
2j + 1

)
+ q0t (j)Vt+1

(
2j
))
,

and write (3.30) as

V0(0) =
1

(1 +R)t+1

2t−1∑
j=0

[(
q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j)

) t∏
k=1

q
mod (bj/2t−kc,2)

k−1

(⌊
j

2t−(k−1)

⌋)]
.

(3.32)
We observe that for each j ∈ {0, . . . , 2t − 1}, there are two new elements, 2j + 1 and 2j, added to the
sum. This gives a total of 2(2t) = 2t+1 elements from 0 to 2t+1 − 1, namely

{0, 1, . . . , 2j, 2j + 1, . . . , 2(2t − 1), 2(2t − 1) + 1} = {0, 1, . . . , 2j, 2j + 1, . . . , 2t+1 − 2, 2t+1 − 1}.

Now, we index each of these elements with the letter `, and observe that

for ` = 2j + 1 2j+1
2(t+1)−(t+1) = 2j + 1 ⇒ mod

(⌊
2j+1

2(t+1)−(t+1)

⌋
, 2

)
= mod (2j + 1, 2) = 1

2j+1
2(t+1)−(t+1−1) = 2j+1

2 ⇒
⌊

2j+1
2(t+1)−(t+1−1)

⌋
= j

for ` = 2j 2j
2(t+1)−(t+1) = 2j ⇒ mod

(⌊
2j

2(t+1)−(t+1)

⌋
, 2

)
= mod (2j, 2) = 0

2j
2(t+1)−(t+1−1) = 2j

2 = j ⇒
⌊

2j
2(t+1)−(t+1−1)

⌋
= j.

Then, we can express (3.32) as

V0(0) =
1

(1 +R)t+1

2t−1∑
j=0

[{
q

mod
(⌊

2j+1

2(t+1)−(t+1)

⌋
,2
)

t+1−1

(⌊
2j + 1

2(t+1)−(t+1−1)

⌋)
Vt+1(2j + 1)

+q
mod

(⌊
2j

2(t+1)−(t+1)

⌋
,2
)

t+1−1

(⌊
2j

2(t+1)−(t+1−1)

⌋)
Vt+1(2j)

}
t∏

k=1

q
mod (bj/2t−kc,2)

k−1

(⌊
j

2t−(k−1)

⌋)]

=
1

(1 +R)t+1

2t+1−1∑
`=0

[
Vt+1(`)

t+1∏
k=1

q
mod (b`/2t+1−kc,2)

k−1

(⌊
`

2t+1−(k−1)

⌋)]
.

Hence we have shown (3.30), and by substituting t = N we arrive to the desired formula (3.29).



Explicit formulae for the valuation of European options with price impacts 13

Example 3.7. Following our previous Example 3.3, we now set s = 10, u = 1.2, d = 0.8, λ = 0.01,
β = 0.01 and R = 0. If we set N = 4 and, as before, we assume that the contract is a call with strike
price K = 11 and that the writer of the contract sells M = 10 contracts, the price of the derivative
without assuming price impacts is

V̂0 = 13.145,

whilst if we assume price impacts, the price of the derivative is

V0 = 14.875.

We find all the values Vt(j), V̂t(j), αt(j), xt(j) qit(j), for 0 ≤ t ≤ N , 0 ≤ j ≤ 2j − 1, i ∈ {0, 1}. The
next tree shows some values for each node.

V0 = 14.87
α0 = 5.36
x0 = −39.25

V1(0) = 3.82
α1(0) = 2.34
x1(0) = −15.17

V2(0) = 0
α2(0) = 0
x2(0) = 0

V3(0) = 0
α3(0) = 0
x3(0) = 0 V4(0) = 0

V̂4(0) = 0

V4(1) = 0
V̂4(1) = 0

V3(1) = 0
α3(1) = 0
x3(1) = 0 V4(2) = 0

V̂4(2) = 0

V4(3) = 0
V̂4(3) = 0

V2(1) = 7.58
α2(1) = 3.81
x2(1) = −29.91

V3(2) = 0
α3(2) = 0
x3(2) = 0 V4(4) = 0

V̂4(4) = 0

V4(5) = 0
V̂4(5) = 0

V3(3) = 14.96
α3(3) = 6.13
x3(3) = −58.27 V4(6) = 0

V̂4(6) = 0

V4(7) = 29.13
V̂4(7) = 28.24

V1(1) = 25.35
α1(1) = 7.06
x1(1) = −61.17

V2(2) = 7.55
α2(2) = 3.81
x2(2) = −29.63

V3(4) = 0
α3(4) = 0
x3(4) = 0 V4(8) = 0

V̂4(8) = 0

V4(9) = 0
V̂4(9) = 0

V3(5) = 14.81
α3(5) = 6.13
x3(5) = −57.49 V4(10) = 0

V̂4(10) = 0

V4(11) = 28.74
V̂4(11) = 28.24

V2(3) = 41.91
α2(3) = 8.77
x2(3) = −88.51

V3(6) = 14.88
α3(6) = 6.13
x3(6) = −57.76 V4(12) = 0

V̂4(12) = 0

V4(13) = 28.88
V̂4(13) = 28.24

V3(7) = 66.58
α3(7) = 10

x3(7) = −113.8 V4(14) = 29.02
V̂4(14) = 28.24

V4(15) = 100.4
V̂4(15) = 97.36
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Example 3.8. Tesla Options. In this example we compute the prices of at-the-money Call and Put
of options with underlying TSLA, one month of expiration, reference strike K = 180, and number of
contracts M = (500, 2500, 25000). Furthermore we have used the following market impact coefficients
λ = 1× 10−7 and β = 1× 10−8.

Strike spread
Put Call
(min,max) (min,max)

M = 500 (179.9881, 179.9987) (180.0016, 180.0123)
M = 5000 (179.8805, 179.9871) (180.0164, 180.1236)
M = 25000 (179.3978, 179.9285) (180.0940, 180.6407)

Figure 1: Description of the variability of the strike price K as a function of M . Source: Authors’
elaboration

4 Concluding remarks

In this work we analyzed the pricing of contingent claims subject to the influence of price impacts in a
discrete-time scenario, and provide explicit formulas in Proposition 3.4 and Corollary 3.5. We observed
that trading a large position of derivatives can cause an impact on both the price of a derivative and its
underlying asset. Furthermore, we suggest that the valuation of derivatives should take into account
the market impacts. In particular, the strike should depend on the size of the trade.

Some open questions to be considered are the following: the model proposed is parametric, how
could we estimate those parameters? can we make a similar analysis in continuous-time models by
using stochastic calculus? Can this model give more clues regarding the volatility smile?
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A One period case

We set a market that consists of two assets, a bond and a stock. The price of the bond is denoted by
Bt, with values,

B0 = 1,

B1 = 1 +R,

where R > 0 refers to the one-period interest rate. The stock is known as a random asset because its
price St at t = 1 can not be anticipated at t = 0. For instance, at time t = 0 the price is observed as
S0 = s, but at the future time t = 1 we have that

S1 = sZ where Z =

{
u with probability p
d with probability 1− p ,

where d ≤ 1 +R ≤ u.
In this market, a portfolio h = (x, α) is a vector in R2, where the component x stands for the

number of bonds, and α represents the number of stocks acquired by the trader (recall that α > 0
means a purchase of stocks, consequently, α < 0 means a sale of stocks). The value process (or simply
the value) of the portfolio h = (x, α) is

V̄ h
0 = x+ αs,

V̄ h
1 = x(1 +R) + αsZ.

Now we introduce a contingent claim or financial derivative for this market as a random variable
X of the form X = Φ(Z), where Z is the random variable described above. This claim is interpreted
as an agreement between two agents: the holder (also known as the owner) and the underwriter. Both
establish that the holder receives (or must pay) a quantity X at a prescribed time t (in this case t = 1).
The function Φ is called the contract function.

An example of a financial derivative is the well-known European option. Namely, M -units of a
European option on a unit of stock, with strike price K and exercise date N (in this case N = 1)
establishes that at maturity time t = N , the holder has the right, but not the obligation, to buy or
sell M units of stock (one for each contract), called the underlying, at the price K, to the underwriter.
The price K is set at time t = 0. We will consider two types of European options, known as call and
put options (or simply call and put), respectively. The call option gives the right to buy the underlying
security, while the put option gives the right to sell it. The situation of interest (but not the only one)
is, of course,

sd < K < su. (A.1)
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If the contract is a call and at exercise date N = 1, K is less than the actual price S1, the option
will be executed, otherwise, the holder will let it expire. Observe that if it is exercised at time t = 1,
the holder pays K to the underwriter in exchange for the stock. Thus, the payoff or contract function
of this claim is

X = Φ(sZ) := max{sZ −K, 0}. (A.2)

In the case of put options, we have an analogous situation. Now the holder will execute his option
only if the price at time t = 1, S1, is below the strike price K and therefore the contract function of
the claim is

X = Φ(sZ) := max{K − sZ, 0}. (A.3)

It follows that if there exists a portfolio h such that V̄ h
1 = X, with probability 1, then h is called

a replicating portfolio of X. This means that regardless of the outcome Z at t = 1, the value of h will
be the same as X, with probability 1.

Some standard results in the one-period binomial model are that for a replication portfolio h =
(x, α), we have

α =
M

s

Φ(su)− Φ(sd)

u− d
(A.4)

x =
M

1 +R

uΦ(sd)− dΦ(su)

u− d
(A.5)

and therefore, the price of the contingent claim X is given by the value at t = 0 of the replicating
portfolio h. In other words, the price of the premium is (see for instance Chapter 2, in Björk [5])

V̄ h
0 =

M

1 +R

[{
(1 +R)− d

u− d

}
Φ(su) +

{
u− (1 +R)

u− d

}
Φ(sd)

]
. (A.6)

Remark A.1. 1. In fact, the underwriter hedges his position by holding the replicating portfolio
h = (x, α). Thereby, at time t = 0 the underwriter buys x bonds, and α units of stock according
to (A.1)–(A.5).

2. The previous formulae work even in the naive cases when (A.1) are not satisfied, namely if
K < sd < su or sd < su < K. For example, for a call option with K < sd < su, we have

α = M, x = − MK

1 +R
, and (A.7)

V̄ h
0 = Ms− MK

1 +R
. (A.8)

B Deriving the equations for the Algorithm

For this section, we assume that t ∈ {0, . . . , N} and j ∈ {0, . . . , 2t− 1}, and use the following fact: for
n ∈ Z+ = {0, 1, 2, . . .} and h ∈ N, we have⌊

2n+ 1

2h

⌋
=

⌊
2n

2h
+

1

2h

⌋
=

⌊
2n

2h

⌋
=

⌊
n

2h−1

⌋
.

If k ∈ {0, . . . , t}, then t+ 1− k > 0 and

t∑
k=0

αk

(⌊
2j + 1

2t+1−k

⌋)
=

t∑
k=0

αk

(⌊
2j

2t+1−k

⌋)
=

t∑
k=0

αk

(⌊
j

2t−k

⌋)
Let us recall equation (3.23):

V̂t(j) := Vt(j)e
−β

t−1∑
k=0

αk

(⌊
j

2t−k

⌋)
(B.1)
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In order to obtain (3.24), first of all, we observe that for t = N

V̂N (j) = VN (j)e
−β

N−1∑
k=0

αk

(⌊
j

2N−k

⌋)
= MΦ

surN (j)dN−rN (j)e
β

N−1∑
k=0

αk

(⌊
j

2N−k

⌋) e
−β

N−1∑
k=0

αk

(⌊
j

2N−k

⌋)

= Me
β

N−1∑
k=0

αk

(⌊
j

2N−k

⌋)
Φ
(
surN (j)dN−rN (j)

)
e
−β

N−1∑
k=0

αk

(⌊
j

2N−k

⌋)
= MΦ

(
surN (j)dN−rN (j)

)
, (B.2)

where we have used equation (3.15). Second of all, by solving Vt(j) from (B.1) we get

Vt(j) = V̂t(j)e
β

t−1∑
k=0

αk

(⌊
j

2t−k

⌋)
, (B.3)

which is equation (3.28). Third of all, from (3.14), (3.18), and (B.3), we have

αt(j) =
Vt+1(2j + 1)− Vt+1(2j)

Ŝt(j)(u− d)

=
Vt+1(2j + 1)− Vt+1(2j)

surt(j)dt−rt(j)e
β
∑t

k=0 αk

(⌊
j

2t−k

⌋)
(u− d)

=
V̂t+1(2j + 1)e

β
∑t

k=0 αk

(⌊
2j+1

2t+1−k

⌋)
− V̂t+1(2j)e

β
∑t

k=0 αk

(⌊
2j

2t+1−k

⌋)
surt(j)dt−rt(j)(u− d)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)

=
V̂t+1(2j + 1)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)
− V̂t+1(2j)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)
surt(j)dt−rt(j)(u− d)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)
=

V̂t+1(2j + 1)− V̂t+1(2j)

surt(j)dt−rt(j)(u− d)
,

which is equation (3.26). If we let t = N − 1, we obtain equation (3.24) .Finally, in order to obtain
(3.27) and (3.25), we use again (B.3), and rewrite (3.16)

Vt(j) =
1

1 +R

[
q1t (j)Vt+1(2j + 1) + q0t (j)Vt+1(2j)

]

=
1

1 +R

[
q1t (j)V̂t+1(2j + 1)e

β
∑t

k=0 αk

(⌊
2j+1

2t+1−k

⌋)
+ q0t (j)V̂t+1(2j)e

β
∑t

k=0 αk

(⌊
2j

2t+1−k

⌋)]

=
1

1 +R

[
q1t (j)V̂t+1(2j + 1)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)
+ q0t (j)V̂t+1(2j)e

β
∑t

k=0 αk

(⌊
j

2t−k

⌋)]

=
1

1 +R

[
q1t (j)V̂t+1(2j + 1) + q0t (j)V̂t+1(2j)

eβ∑t−1
k=0 αk

(⌊
j

2t−k

⌋)
+βαt(j)

.

This implies that

V̂t(j) = Vt(j)e
−β
∑t−1

k=0 αk

(⌊
j

2t−k

⌋)
=

1

1 +R

[
q1t (j)V̂t+1(2j + 1) + q0t (j)V̂t+1(2j)

]
eβαt(j).

which is equation (3.27), and if we substitute t = N − 1, we get equation (3.25).
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