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inflations which improves the modeling accuracy using 
small-sample inference based on specific parametric as-
sumptions. A theory-congruent model for the Bolivian hy-
perinflation was estimated as a case study.
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Hyperinflations are short-lived episodes of economic insta-
bility in prices which characteristically last twenty months or 
less. Classical statistical techniques applied to these small 
samples could lead to an incorrect inference problem. This 
paper describes a Bayesian approach for modeling hyper-
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1. INTRODUCTION 

 hyperinflation is a short-lived episode of economic instability in prices, which 
characteristically lasts twenty months or less (Mladenovic and Petrovic, 2010). The 
estimation of hyperinflation models with classical asymptotic theory applied to 

these extremely small samples could lead to misleading conclusions. Thus, as the precision 
of any hyperinflation study is constrained by the small sample of these phenomena, policy-
makers face the dilemma of basing their decisions on inaccurate empirical results. 

For example, in the Cagan (1956) model of hyperinflation, a negative inflation elasticity 
(α ) is predicted, which can be used to find the optimal seigniorage (1/α ) that central 
banks could achieved by printing money. Cagan found that the average inflation rate in 
many hyperinflations was beyond this optimal rate, thus concluding that money supply was 
the cause of hyperinflations. Nevertheless, Sargent (1977) argues that estimating α  with 
classical (asymptotic) statistical techniques leads to imprecise values and thus the 
conclusions not convincingly conform to the predictions from the Cagan’s model. 
Bayesian methods can be used to solve this problem: these methods provide techniques for 
handling uncertainty in finite samples, because Bayesian finite-sample inference based on 
specific parametric assumptions is approximately correct when the parametric 
assumptions are approximately correct (Sims, 2007).1  

The aim of this paper is to describe a complete Bayesian specification approach for 
modeling hyperinflation phenomenon. Bayesian methods for i) the estimation of a set of 
models with different prior densities, ii) the empirical comparison of these models with 
data evidence, and iii) the statistical evaluation of the estimated models are describe in 
Section 2. In Section 3 the hyperinflation model of Cagan-Sargent-Wallace (henceforth, 
CSW) is estimated and evaluated with Bayesian methods using data of the Bolivian 
hyperinflation as a case study. Section 4 discusses the results. 

 
2. METHODS 
This section outlines the CSW model of hyperinflation and describes the estimation, 
comparison and testing of this model with Bayesian methods.  

 
2.1   THE CSW MODEL OF HYPERINFLATION 
The Cagan model is an equation of money demand of real balances as a function of 
expected future inflation ( e

tp∆ ) that can be derived from an intertemporal utility 
maximizing framework (see Appendix 1), 

,e
t t t tm p p uα− = − ∆ +  

where tm  and   tp  are logs to nominal money and prices, respectively, tu  is a stochastic 
disturbance term of money demand shocks, and α  is the semi-elasticity of the demand for 

                                                           
1 See Bolstad (2004), Gosh et al. (2006) and Greenberg (2008) for an introduction to Bayesian 
statistics, and Koop (2003), Geweke (2005), Gill (2007) for applications in economics and recent 
developments in Bayesian methods. 
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real balances with respect to expected inflation, e

tp∆ . The unobservable expectation e
tp∆  is 

a distributed lag of current and past actual rates of inflation, with geometrically declining 
weights, 
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This expectation is not rational in the sense of Muth (1961). To provide a 
rationalization of Cagan's model, Sargent and Wallace (1973) assumed that tu  follows the 
Markov process 1t ttu u η−= + ,  with a rate of money creation tµ  governed by, 

1
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which is Cagan's adaptive expectations scheme, and on the hypothesis that expectations 
are rational,2 

1 .t t t
t

xµ ε+= +  

This equation captures the feedback from expected inflation to money creation that will 
occur if the government is financing a roughly fixed rate of real expenditures by money 
creation. Under the previous assumptions, inflation and money creation form a bivariate 
stochastic process given by (Sargent, 1977) 
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2.2   BAYESIAN ESTIMATION 
The previous model can be written as a first-order vector auto-regression, first-order 
moving average process (see Appendix 2):3 

 

                                                           
2 The Sargent-Wallace assumption that expectations are rational is imposed by requiring that, 

1π +=t t tx , for t  the conditional expectations operator of 1+tx  formed using the model and 
available information as of time t . 
3 This rational expectations system can be viewed too as a state space model where the state vector 

[ ]1 2=t t ta a a ´ marks the state transition. 
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being the random variables 1ta , 2ta  the innovations in the x  and µ ,  processes, 
respectively. If, 

1 2t t ta a=a  
and Da is the covariance matrix of ta ,  
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the likelihood function of the sample t = 1,…,T would be,4 
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The Bayesian estimation of the vector of parameter ( )2 2, , ,ε ηα λ σ σ=θ  of a model  

with ( , )T t txµ=Y  comes from the posterior density ( )| ,Tθ Y   ,  

( ) ( ) ( )
( )

| , |
| , ,

|
T

T
T

=
Y θ θ

θ Y
Y

 



 



 



 

or 
( ) ( ) ( )| , | , | ,T T∝θ Y Y θ θ        

which is the un-normalized posterior density, where ( )|θ    is the Bayesian prior of the 

parameters inθ   and ( )| ,TY θ     is the likelihood function,5 
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2.3 BAYESIAN COMPARISON OF CSW MODELS 
Marginal likelihoods and Bayes factors can be used to compare CSW models with different 
priors. Let 1( )   and 2( )   be the prior probability of the validity of two competing 
models 1  an 2 . The posterior odds ratio, 
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is an aid to balance 1  an 2   because this ratio provides evidence of the quality of one 

                                                           
4 Sargent (1977) showed that, even if α and εησ  are not identified (α does not appear explicitly in 
  but indirectly by way of the elements of a ), it is possible to obtain maximum likelihood 
estimators of the structural parameters 2 2, , ,  , ε η εηα λ σ σ σ , on the basis of the four parameters 

11, 12 22,  ,λ σ σ σ , imposing 0,εησ =  i.e., zero covariance between money demand and supply shocks. 
5 According to Canova (2007), these prior densities are 1) the subjective beliefs that a researcher has 
in the occurrence of an event, 2) an objective evaluation based on recorded information, or 3) the 
outcomes of previous experiments. 



 
model specification over the other.  With prior equiprobabilities, 1 2( ) ( )=   ,  the 
posterior odds ratio becomes a ratio of marginal likelihood ( | )T iY  ,6 i.e., the Bayes 
factor 
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and Jeffrey's rules can be used to compare model 1 versus model 2 based on the weight of 
evidence contained in the data (see Gill, 2007): 
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2.4 TESTABLE IMPLICATIONS OF THE CSW MODEL 
The implications of the CSW model can be tested in order to provide evidence in favor or 
against the adequacy of this specification for modeling hyperinflation phenomena: 

 
Inherent Cointegration 
A necessary condition for the CSW model to hold is that real money balances and inflation 
be integrated of the same order and cointegrate −after normalization on  real money 
balances− with a cointegration parameter equal to α,  the semi-elasticity of real money 
demand with respect to expected inflation in the hyperinflation model (Taylor, 1991). Let

1t+  be the stationary rational expectations error ( )1 1 1
e

t t tp p+ + += ∆ −∆ , then the portfolio 

balance schedule, e
t t t tm p p uα− = − ∆ +  becomes, 

( )1
1 1,t t t tp m pα ζ−
+ +∆ = − +  

wit ( )1
1 1 tt t uζ α−
+ += − . If during hyperinflations real money balances and inflation are 

non-stationary, first-difference stationary processes, ( ) ~ (1)t tm p I− , ~ (1)tp I∆ ,  the omitted 
real-side variables contained in tu  admit a Wold representation, and subtracting 1tp +∆  from 

both sides of ( )1
1 1t t t tp m pα ζ−
+ +∆ = − + , 

                                                           
6 The marginal density of the data, conditional on a t-model, can be calculated using information 
from the B-runs of the Metropolis-Hastings algorithm with the harmonic mean estimator of Geweke 
(1999),  
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where ( )·f  is a probability density function. 



 

( )2 1
1 1.t t t t tp m p pα ζ−
+ +∆ = − −∆ +  

Since 2
1tp +∆  and 1tζ +  are stationary, this equation implies that the linear combination 

( )1
t t tm p pα− − −∆   must be stationary if the CSW model holds. 

 
Rational Expectations Restriction 
If inflation is I ( 1 )  and is cointegrated with real money balances, then ( )t t t te m p pα= − − ∆  

would be stationary, and taking expectations of ( )2 1
1 1t t t t tp m p pα ζ−
+ +∆ = − −∆ +  conditional 

to information at time t ,  tΩ , 

( ) ( )2
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where ( )1 1t t tuι α+ += − . With an information set of the current and n-lagged values of 2
tp∆

and te , 2 2 2
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the CSW model is exact ( )( | 0)n
t tu =H , 

( )2
1 | 0.n
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Then, testing for zero coefficients in a least square projection of ( )2
1t tp eα +∆ −  onto 

elements of n
tH   allows to evaluate the orthogonality condition ( )2

1 | 0n
t t tp eα +∆ − =H , i.e. 

the rational expectations hypothesis that agents’ expectation of next period's inflation rate 
should be the true conditional mathematical expectation. 

 
Co-explosiveness 
Recently, Nielsen (2008, 2010) pointed out that the CSW model is not adequate if inflation 
accelerates during hyperinflations, i.e., when ( ) ~ (1)t tm p I−  but tp∆  is explosive, thus the 
cointegration analysis cannot be applied directly. This would be the case if the roots of a 
vector auto-regression are explosive (within the class of vector autoregressive models, 
accelerating inflations can be captured by allowing for an explosive characteristic root 
generating a common explosive trend). Let 't t tp m=   Z  be the vector of log prices and 
money during hyperinflations, a vector autoregressive (VAR) model with deterministic 
exogenous variables for tZ would be, 
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with tϖ  a multivariate white noise process and ,q kΞ Φmatrixes of coefficients for tZ  and tX  . 
Let D be the companion matrix of this model, 
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if any of the eigenvalues or the eigenvalues’ modulus from the secular equation 
( )det  kκ−D I  is larger than one, then the dynamics of prices and money is co-explosive 

and the CSW model would not be adequate to describe the hyperinflation episode under 
study. 

 
2.5 BAYESIAN TESTING OF THE CSW IMPLICATIONS 
Bayesian Testing of Unit Roots 
The inherent cointegration of real money balances and inflation can be tested with the 
Bayesian unit root test of Sims (1988). Let α  be the Bayesian estimation of α, a necessary 
conditions for inherent cointegration is that both ( )t tm p−  and tp∆   be (1)I  and 

( ) ~ (0)t t tm p p Iα − − ∆  , i.e. ( )t t tm p pα − − ∆   should not have a unit root.7 
According to Sims, the unit root hypothesis can be tested comparing the statistic 

( ) 22 ˆ1 / ρτ ρ σ = −  with two critical values: an asymptotic Schwarz limit ( )2log ρσ−   and a 

small-sample limit (assuming a flat prior distribution and a Normal-inverse Gamma 
likelihood function),8 

21 ( )
2 ( ) (2 ) 2 (1 ),

( )
log log log logρ

ρ σ π ι
ρ

 −
− − + − 

 




 

where 1 ( )ρ−   is the prior probability of 1ρ =  and ι  is the low bound of the region ( ,1)ι  
where the prior is concentrated. 

 
Bayesian Testing of Rational Expectations Restrictions 

Let cβ  and Hβ  be two Bayesian-conjugate estimators from two different models. In the first 

model, the variable 2
1: ( )t ty p eα += ∆ −  is a function of a constant term only, and in the 

second model y  is a function of : n
t=H H , 9 

                                                           
7 Note that this procedure is similar to the frequentist two-step testing methodology of Engle and 
Granger (1987). 
8 With ρ  the ordinary least square estimator of the autoregresive parameter and 2

ρσ , the estimated 
variance of this parameter. Sims (1988) questioned the use of traditional unit root tests such as the 
Dickey-Fuller or the Phillips-Perron test, as the disconcerting topology (as termed by Sims) of the 
discontinuous confidence regions encourages unreasonable inference. Also, unlike the traditional 
unit root tests, the Sims’ test allows to incorporate the empirical evidence that a large value of 2

ρσ  
(i.e. the scale parameter of the marginal Student’s t distribution of ρ , with 1T − degrees of 
freedom) provides evidence against the unit root hypothesis, even if the value of 2τ statistic for 1ρ =
is relatively small. 
9 See Appendix 3 for details. 
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Model 1 involves the rational expectations restriction of zero coefficients for 
2 2 2

1 1, ,..., , , ,..., .t t t n t t t np p p e e e− − − −∆ ∆ ∆  In model 2 the restriction is not met because the 

parameters contained in Hβ  are presumed to be statistically different from zero. These two 
alternatives translate to 0 1( | ) ( | ) 1data data+ =    , where model 1 represents the null 
hypothesis of rational expectations ( 0 ). This null can be tested with the posterior 
probability of 0  as a function of the Bayes factor of model 1 against model 2 ( )r , scaled 

by the ratio of the prior probability of rational expectations ( )0  against the prior of no 

rational expectations ( )1  :10 
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Bayesian Stability Evaluation 
Since the number of parameters in a VAR(k) model can be quite large relative to the 
available data, as the number of lags k  increases there is an increasing possibility of getting 
imprecise estimates of 1,..., kΦ Φ  and thus an imprecise stability evaluation. As Robertson and 
Tallman (1999) suggested, in small samples, it is necessary to put constraints on the values 
of the model's coefficients in order to require less information from the data when 
determining the coefficient values; with Bayesian methods, these constraints adopt the 

                                                           
10 Gill (2007). Because 0 1( | ) ( | ) 1data data+ =    , then ( ) ( )0 1| 1 |data data= −    . Using the 
Bayes law and the definition of the Bayes factor: 
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In the normal-linear model with natural conjugate priors, the integrals of the marginal likelihood of 
the Bayes factor r  can be calculated analytically (see Koop, 2006, pp. 24-25 for details). 
In a traditional frequentist approach, the rational expectations restriction is tested running a least 
squares regression of 2

1( )t tp eα +∆ −  against n
tH  and testing the null that the coefficients that 

correspond to n
tH are equal to zero. Testing rational expectations restrictions with Bayesian 

methods is not as straightforward as in the frequentist analysis, being the two-sided hypothesis 0β =  
antithetical to the Bayesian philosophy: Bayesians are uncomfortable placing prior mass on a point 
null hypothesis. In testing 0β =  against 0β ≠ , a continuous prior distribution for β  cannot be 
assigned since this would imply zero mass at the null point, providing an infinite bias against the 
nesting (See Gill, 2007, page 238, for a detailed discussion). 



 
form of prior densities for 1,..., kΦ Φ . 

More specifically, with the Sims-Zha Normal-Wishart prior (Sims and Zha, 1998), the 
traditional OLS estimator of a VAR model, 

( ) 1
, 1,...,ˆ  ,OLS

i i k
−′ ′ =Φ = R R R y  

is replaced with the Bayesian estimator, 

( ) ( )11 1
, 1,..., ,B

i i k
−− −′ ′= + + =Φ H R R H B R y  

where y  is the vector of endogenous variables, R is the matrix of right-hand side regressors 

in the VAR model (lags of y and exogenous variables), B  is the prior mean of coefficients 
and H  is a diagonal, positive-definite matrix, defined with the vector of hyperparameters 

[ ]1 6=   ,  where 1  to 4  govern the lag decay and the tightness around the 
parameters, and 5 6,   control the possibility of cointegration and unit roots.11 Then, the 
Bayesian stability evaluation of a hyperinflation episode is based on the eigenvalues of the 
companion matrix DB of a Bayesian vector auto-regression, 
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with ˆ ,  1,...,B

i i kΦ =  the Bayesian estimators defined previously. 
 

                                                           
11 Sims and Zha assume that the prior conditional covariance matrix of this coefficients follow the 
same pattern that Litterman (1986) gave to the prior covariance matrix on reduced form 
coefficients, i.e., the conditional prior is independent across elements and the conditional standard 
deviation of the coefficient on lag l of variable j in equation i is given by 3

0 1 / jlσ    .The 
hyperparameter 0  controls the tightness of beliefs, 1  controls the overall tightness around the 
random walk prior and 3  controls the rate at which prior variance shrinks with increasing lag 
length. The parameters 1,..., mσ σ  are scale factors, allowing for the fact that the units of 
measurement or scale of variation may not be uniform across variables. Sims and Zha choose these 
as the sample standard deviations of residuals from univariate autoregressive models fitted to the 
individual series in the sample. The constant term has a conditional prior mean of zero and a 
standard deviation controlled by 0 4   , where 4  is a separate hyperparameter. Sims and Zha also 
introduce dummy observations in the posterior p.d.f. to favor the presence of unit roots and 
cointegration, with the scale hyperparameters 5  and 6 . When 5 →∞  , the model tends to a 
form that can be expressed entirely in terms of differenced data, i.e. there are as many unit roots as 
variables and there is no cointegration. As 6 →∞ the model tends to a form in which either all the 
variables are stationary, or there are unit root components without drift (linear trend) terms, 
without ruling out cointegrating relationships. See Appendix 4 for details. 



 
3. RESULTS 

uring 1984 to 1985, monthly inflation almost reached 200 percent in Bolivia 
(Figure 1). Unlike other hyperinflations, the Bolivian case did not arise after a 
foreign war, a civil war or a political revolution, but rather in a period of political 

uncertainty that followed years of prosperity based on auspicious terms of trade and heavy 
foreign borrowing in the late 70s. The situation in Bolivia worsened as a consequence of 
the unfavorable international environment of high interest rates and falling commodities 
prices in the early 80s. By the year 1984, the inflation rate began to accelerate, the economy 
declined in real terms and the government was unable to borrow from international 
markets. The end of the crisis came along with an orthodox stabilization program 
proposed by the newly elected president Victor Paz Estensoro in august 1985 (Sachs, 
1987).12 

Cagan (1956) defined a hyperinflation as beginning in the month the rise in prices 
exceeds 50 percent and as ending in the month before the monthly rise in prices drops 
below that amount and stays below for at least a year. By this definition, the Bolivian 
hyperinflation lasted from April 1984 to September 1985, a total sample of 18 observations.  
 

Figure 1 
Bolivian Inflation and Hyperinflation (Shaded) 

 

 

                                                           
12 This program prompted the devaluation and subsequent managed float of the exchange rate, a 
commitment to full currency convertibility on the current and capital accounts, a reduction of fiscal 
deficit through a sharp increase in public sector prices (e.g., the price of domestic oil), a public 
sector wage freeze, a tax overhaul proposal to broaden the tax base and raise tax revenue and the 
signing of an IMP stand-by arrangement, besides other policies of trade liberalization, internal price 
decontrol and decentralization or privatization of public enterprisers. See inter alia Sachs (1987), 
Morales and Sachs (1989) and Pastor (1991) for details of the Bolivian hyperinflation. 
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Table 1 
Bayesian Estimates of the CSW Model1 

 
1  2  3  

α 
–11.4615 –14.0747 –8.3639 

[–17.7434, –4.1398] [–19.4283,–
9.1682] 

[–9.8646, –6.8366] 

 λ  
0.6691 0.7164 0.6752 

[0.5096, 0.865] [0.6428, 0.7928] [0.6058, 0.7531] 
2
ησ  

0.7020 0.7768 0.5442 
[0.4176, 0.9902] [0.5500, 0.9998] [0.3233, 0.8070] 

2
εσ  

0.1795 0.1750 0.1753 
[0.1376, 0.2329] [0.1261, 0.2229] [0.1246, 0.2234] 

1 1 , 2 , 3 : Bayesian estimates for models 1, 2 and 3, respectively. Bayesian 
credible intervals between brackets. 

 
  
3.1   CSW ESTIMATION AND COMPARISON 
Three CSW models 21 3,  ,      with different prior distributions were estimated with the 
sample of the Bolivian hyperinflation. The Bayes factor analysis supported 2 ,  in which 
the estimation of the parameter of interest –the semi-elasticity of demand for real balances 
with respect to expected inflation– was equal to 

2
ˆ 14.0747α = −  (Table 1, Figure 2). 

In order to mitigate possible frequentist criticisms of subjectivity, model 1  was design 
as an agnostic model that avoids assigning informative values for the unknown parameters 

( )1

2 2, , ,ε ηα λ σ σ=θ : 

In 1 uninformative but proper uniform priors with bounded support were chosen for  

1
θ :

 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2
1 1

| 20,0 , | 0,1 ,

| 0,1 , | 0,1

d d

d d

η ε

α λ

σ σ

= − =

= =

 

 

   

     

In 2 and 3 the prior distribution of λ  was ( ) ( )2,3| 0.7093,0.003
d

λ =   , with
ˆ 0.7093λ =  the maximum likelihood estimate of the CSW model. For these models, the 

prior elicitation of α  followed two approaches: 
In model 2 the prior of α  was based on the maximum likelihood estimate ˆ 15.5α = − , 

then ( ) ( )2| 15.59,4.32
d

α = −   .  
In model 3  the location parameter of the prior distribution was elicitated according 

to scientific knowledge on the field, a common practice in Bayesian analysis. A value of 

8.052 was chosen for the prior mean of α, ( ) ( )3| 8.052,1dα = −   ; this value is based on the 
Phylaktis and Taylor (1993) non-Bayesian estimation of the CSW model for the Bolivian 



 
hyperinflation. 

Bayes factors were used both to compare and choose between models (Table 2), using

1  as a benchmark model. Substantial evidence against model 1 was found because

1 2 1 3

1 1/2
, ,10 , 10− −< <     .  

The Bayes factor of 2  against 3 was equal to  

( )
( )2 3,

exp 0.490932
1.1511

exp 0.350166
= =  , 

favoring model 2. Since 2  was supported by the data, the Bayesian point estimation 
2

α  
of model 2 was used in the validation analysis. 
 

Table 2 
Bayes Factors 

 ( )ˆln Y | iT   ,i j   

1  –1.101327 1 

2  0.490932 0.2035 

3  0.350166 0.2342 

 

Figure 2 
Bayesian Estimation of α  in Models 1  (top), 2  (middle) and 3  (bottom) 

 

 
 



 
Figure 3 
Dynamics of m , p in levels (top), differences (middle) and the 
transformed expression 

2

1[ ( ) ]t t tm p pα− − −∆   (bottom) 

 
 
3.2   BAYESIAN VALIDATION OF THE CSW MODEL  
Testing the CSW Model (I): Unit Roots 
The results of the Bayesian unit root test suggested that real money balances and prices 
were cointegrated during the Bolivian hyperinflation. Using a probability of 0.1 on the 
stationary part of the prior, flat on the interval [0.5,1], the linear combination 

( )
2

1 t t tm p pα− − −∆   was found to be stationary with a zero order of integration. On the 

contrary it was found that ( ) ~ (1)t tm p I−  and ~ (1)tp I .  Figure 3 shows that tp  evolves with 

an upward trend and ( )t tm p− seems to follow a random walk process. Then, as expected, 
the null of unit root of these series could not be rejected with the Sims’ statistic, based on 
the small-sample limit of the Bayesian test. In contrast, the null of unit root is rejected for 

( ),t t tm p p∆ − ∆  and ( )
2

1 t t tm p pα− − −∆  , both with the Schwarz asymptotic limit and the 

small-sample limit (Table 3). The low value of the marginal probability of the test shows 
that the data provides strong evidence against the unit root hypothesis of

( )
2

1 t t tm p pα− − −∆  , supporting the evidence in favor of the CSW model 2 .  



 
Table 3  
Results of the Bayesian Unit Root Test 

 Sims 
statistic 

Asymptotic limit 
(Schwarz) 

Small-sample 
limit 

Marginal 
probability 

( )t tm p−  2.5923 3.0557 4.2260 0.2009 

tp  3.5037 3.7773 4.9476 0.1861 

( )t tm p∆ −  14.7348 2.8039 3.9742 0.0005 

tp∆  8.2053 2.8086 3.9789 0.0132 

( )
2

1 t t tm p pα− − −∆   7.8217 2.8148 3.9851 0.0161 

 

Table 4 
Bayesian Testing of Rational Expectations Restrictions 

Prior assumptions1 
Regressor matrix2 

H(0) H(1) 

0 1( ) ( )P=    r  0.00442 0.00522 
 

0 |( )data   0.00440 0.00519 

0 1( ) ( )P>    r  0.03978 0.04699 
 

0 |( )data   0.26362 0.29720 

Log of marginal likelihood –51.5401 –51.7067 
1 In the first case 0 1( ) ( ) 0.5P= =    , and in the second case

0( ) 0.9=     and 1( ) 0.1=  . 
2

2(0) {1, , }t tH p e= ∆  and 2 2
1 1(0) {1, , , , }t t t tH p p e e− −= ∆ ∆ .  

 
 
Testing the CSW Model (II): Rational Expectations 
The rational expectations hypothesis was rejected, even when a high prior probability of 
rational expectations was assumed a priori. The log-marginal likelihood of the Bayesian 
model of 2

1: ( )t ty p eα += ∆ −  regressed on a constant term, was equal to –56.9618. Including 
2

1tp +∆  and te  as regressors, the log-marginal likelihood increased to –51.5401. Based on 
the comparison of these marginal likelihoods, the probability of rational expectations is 
equal to 0.0044, with a Bayes factor of 0.00442 (Table 4). These values provide decisive 
evidence against the rational expectations hypothesis. The statistical significance of the 
parameters 1β  and 2β , related to 2

1tp +∆ and te respectively, can be appreciated in the form 
of the marginal posteriors and the joint posterior density of these coefficients, which is 
concentrated away from zero (Figure 4). 

Even when a high prior probability of rational expectations was assumed in advance

0( ) 0.9=  , the posterior probability of rational expectations is still low, equal to



 

0( ) 0.29362|data =  , providing again substantial evidence against the rational 

expectations restrictions. Similar results were obtained when lags of 2
1tp +∆ and te were 

included in the Bayesian auxiliary model (Table 4). 
 

Testing the CSW Model (III): Explosive Roots 
No evidence of co-explosiveness was found after estimating Bayesian vector auto-
regressions with the vector of prices and money. Three BVAR(k ) models ( k  = 1,2,3) where 
estimated, with a constant and a trend term as exogenous regressors (as in Nielsen, 2008), 
using a Sims-Zha prior equal to [ 1, 2, 3, 4, 5, 6 ] = [0.7, 1, 0.9, 1, 0.4, 0.1].13 In all 
the cases the roots of the companion matrix were inside the unit circle (Table 5, Figure 5), 
suggesting that prices and money were not co-explosive during the Bolivian hyperinflation. 

 
4. DISCUSSION 

he hyperinflation episode of Bolivia was modeled with Bayesian methods. A low 
probability that the agents’ expectations have been rational was found, and there is 
no evidence that the behavior of prices and real balances was explosive during this 

hyperinflation. The results suggest that the excess of money was the cause of this 
hyperinflationary phenomenon, as the authorities expanded the money stock beyond the 
optimal rate that maximizes the sustainable real revenues. 
 

Figure 4 
Joint Posterior Density of 1β and 2β  

 

                                                           
13 The values of 65,  were chosen to reflect the observed non-stationary behavior of prices and 
money, and the evidence of cointegration between these variables. The values of 1 2 3 4, , ,     were 
chosen minimizing the in-sample root mean squared error between the fitted values and the 
observed vector of prices and money. A similar approach can be found in Brandt and Freeman 
(2002). 
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Figure 5 
Roots of D B  for three Bayesian VAR Models 

 

 
 

 
Table 5 
Bayesian Stability Evaluation 

BVAR 
order 

Eigenvalues of the companion matrix 
Real Imaginary Modulus 

1 
0.8970 - - 
0.8450 - - 

2 

0.8790 –0.0343 0.8716 
0.8709 –0.0343 0.8716 

–0.2351 – –0.2351 
0.1850 – 0.1850 

3 

0.9688 – 0.9688 
0.9111 – 0.9111 

–0.0332 0.6449 0.6458 
–0.0332 –0.6449 0.6458 
–0.4752 - 0.4752 
0.4126 - 0.4126 

 



 
The Bayesian estimation of 

2
α = –14.07 indicates a theory-consistent negative semi-

elasticity in the money demand equation. This estimate implies an optimal rate of inflation 
equal to 7.10  

2
)( 1/α−   with a Bayesian credible interval of 5.15% to 10.91%. Average 

inflation during the Bolivian hyperinflation was 50.8%; a value outside the credible 
intervals that exceeds seven times the optimal-inflation-rate point estimation. This result 
indicates an excessively fast money supply expansion in the Bolivian hyperinflation, far 
above the optimal rate that maximizes the real revenues that the central bank could have 
obtained (i.e., the Cagan’s paradox). This finding is in line with the debt-crisis’ 
explanation of the origins of the Bolivian hyperinflation proposed by Morales and Sachs 
(1989): as net resource transfers to Bolivia from the rest of the world turned negative in 
1982, seigniorage financing substituted the decline in resource flows and the government 
focused their resources on foreign debt service, resorting to printing money to finance the 
domestic spending that no longer could be sustained with taxes, due to the collapse of the 
main export commodities. This monetary emission promote a repeated and accelerating 
depreciation of the exchange rate, further prompting inflation. 

Since no evidence of co-explosiveness between prices and money supply was found for 
the Bolivian hyperinflation, this event would have been different from the hyperinflation 
episode of Yugoslavia, for which Nielsen (2008, 2010) found evidence of co-explosiveness, 
requiring the use of vector auto-regressive models with explosive roots of the type 
described in Juselius and Mladenovic (2002) and Nielsen (2010).  

The orthogonality-constraint rejection of the rational expectations hypothesis (REH) 
implies that there were demand shocks (not explicitly detailed in the CSW model) that 
explain money demand in the Bolivian hyperinflation, besides expectations. However, the 
rejection of the REH could be negligible to the findings about the presence of the Cagan’s 
paradox, since, as suggested by Engsted (1998), the estimation of α  does not require the 
precise specification of the mechanism behind the formation of expectations or the exact 
nature of the disturbance tµ ,  if money balance and inflation are cointegrated. Evidence of 
this inherent cointegration was found with a Bayesian unit root test applied to

( )
2

1
t t tm p pα− − −∆  . 

Methodologically, it was shown that the Bayesian approach allows to properly model an 
economic crisis with a short sample of observations, since these methods increase the 
precision of statistical inference by means of incorporating information about the 
parameters of interest in the form of prior probability assumptions. Furthermore, the 
validity of the prior assumptions can be evaluated empirically with Bayes factors, and the 
implications of the model can be tested with modern Bayesian techniques, thus improving 
the quality of the specification process in small samples. 

 



 
APPENDIX 1 
Intertemporal Utility Maximizing Framework of the Cagan’s Model 
Cagan’s model can be derived from an intertemporal utility maximizing framework under 
rational expectations, as in Gray (1984). Consider an economy composed of identical, 
infinitely lived households, each of which maximizes the utility function, 

( ) ( )
0

,t
t tU e v c w n dtρ∞

= +  ∫  

subject to the budget constraint, 
·

,t t t tP y P c M= +  
being ρ  the internal rate of discount, tc  and tm  real household consumption and money 
balances at time t , tP  the price level, and M t  the instantaneous time rate of change of 
nominal money balances. The solution to the household's problem is found by maximizing 
the Hamiltonian function H  with respect to the control variable tc , 

( ) ( ) [ ].t
t t t t t tv c w n e P y P cρ χ−= + + −    

Any consumption plan that maximizes  must satisfy, 

( )

( )( )
·

·

0,

1/ ,

. 

t
c t t t

t

t
t n t tt

t

t t t t
t

v c e P
c

w n P e
M

M P y P c

ρ

ρ

χ

χ χ

λ

−

−

∂
= − =

∂
∂

= − =
∂
∂

= = −
∂







 

Equilibrium in the markets of goods and money requires that a fixed stock of nominal 
money be demanded by households at each point in time. This implies zero planned net 
increments to the nominal money balances of the representative household, M t  = 0, thus 
allowing to solve the equilibrium price path, 

( )
( )

.n tt

t c

w nP
P v y

ρ= −  

The money demand function can be obtained from the Euler equation if ρ  =  0 and the 
function ( ) lnw n n n n= −  .  See Gray (1984). 

 
APPENDIX 2 
State-space Representation of the CSW Model 
The system of equations in section 2.2 can be obtained after rewritten the bivariate 
process, 

 

( )( ) ( )( )

( ) ( )( ) ( )( )

1

1
1

(1 ) 1 1 ,

1  1 1 .

t t t

t t t t t

L x L

L

λ α λ λ ε η

µ λ α λ λ ε η ε ε

−

−
−

− = + − − −

 − = + − − − − +  

 

So, 
 



 
( )( )( )1 1

,
1t t t

L
x

L

λ α λ λ
ε η

λ
+ − −

− =
−

 

 

substituting in 1
1t t tx

L
λε µ
λ
−

= −
−

 and rearranging gives, 

 
( )( )( )1 ( 1 1

,
1t t t

L
x

L

λ λ α λ λ
η µ

λ
− + + − −

= −
−

 

in vector notation, 

( )( )( )

1
1

1
1 ( 1 1

1

.
1

t t t t
L

x
L

L

λ
λε η µ

λ λ α λ λ
λ

− − − =
− + + − − − − 

 

Multiplying both sides of the equation by ( )1 Lλ− I   where I is a 2 2×  identity matrix, 

( )
( )( ) ( )1 1 1 1

1 1 0
.

11 1 1t t t t t t t tx x
λ λ

ε η λ ε η µ µ
λ α λ λα λ− − − −

− −  − 
− = +   + − −− + −    

I  

Let 0G =  
( )
( )( )

1 1

1 1 1

λ

α λ

− − 
 
− + −  

. Premultiplying the preceding equation by, 

( ) ( ) ( )( )1
0

1 1
/ 1 .

1 1 1
G λ α λ

α λ λ
− − 
= + − + − − − 

 

Gives, 

( )
1

1 2 1 1 2 1 0 1 1

0
,

1t t t t t t t ta a a a x G x
λ

λ µ µ
λ α λ λ

−
− − − −

− 
− = +  + − − 

I  

where 1
1 2 0 .t t t ta a G ε η−≡  Computing ( )

1
0

0
1

G
λ

λ α λ λ
− − 
 + − − 

explicitly and rearranging gives, 

 

( )
1

1 2 1 1 2 1
1

1 0
1

t
t t t t t t

t

x
x a a a aµ λ

λ λ µ
−

− −
−

 
 


 
= + −− −  

I  

And the innovations 1
1 2 0t t t ta a G ε η−=  are equal to,  

( ) ( ) ( )( )

( )
( )

( )
( )

1 2

1 1
/ 1

1 1 1

1 1
.

1

,

1

t t t t

t t t t

a a λ α λ ε η
α λ λ

ε η ε η
λ α λ λ α λ

− 
= + − + − − − 

= − −
+ − + −

 

See Sargent (1977). 
 



 
APPENDIX 3 
Natural-conjugate Bayesian Estimators for Testing Rational Expectations 
Restrictions 
Let 2

1: t ty p eα += ∆ −  and remove the time and lag-length subscripts of n
tH  for convenience, 

: [     ].n
t=H 1 H  The likelihood function for two linear regression models, one with n

tH as a 
matrix of regressors and the other one only with a constant as a regressor, would be, 

( ) ( ) ( ) ( )2 2
2

1
, | , 2 exp ,

2

T

c c c c c
c

y y yσ πσ
σ

′−  
= − − − 

 
β 1 1β 1β  

( ) ( ) ( ) ( )2 2
2

1
, | , 2 exp , 

2

T

y y yσ πσ
σ

′−  
= − − − 

 
H H H H

H

β H Hβ Hβ  

where β . is a 1n ×  vector of coefficients and 1 is a 1T ×  unitary vector (the constant 

term). The values for which ( )2, | ,c c yσβ 1  and ( )2, | ,yσHβ H  are at its maximum are well 

known from standard likelihood theory and ordinary least square principles, 

( ) ( )1 1ˆ ˆ, ,cb y b y− −′ ′ ′ ′= =HH H H 1 1 1  

( ) ( ) ( ) ( )2 2
ˆ ˆ ˆy- y- ´

ˆ ˆ, = .
T-n

ˆ
c c

c

y b y b b

T

b

n
σ σ

′ ′
− −

=
−

H H
H

1 1 H H

 
If these values were plugged into ( )2, | ,c c yσβ 1  and ( )2, | , ,yσHβ H  then, 

( ) ( ) ( ) ( )( )2 2
2

1 ˆ ˆ, | , exp ,
2

ˆT
c c c c c c c c

c

y T n b bσ σ
σ

− ′ 
= − − + − − 


σ


β 1 β 11 β  

( ) ( ) ( ) ( )( )2 2
%2 

1 ˆ ˆˆ, | , exp .
2

Ty T n b bσ σ σ
σ

− ′ 
= − − + − − 

 
H H H H H H H

H

β H β H H β  

Let ( ) ( ) ( )2 2 2, |c c c c cσ σ σ=β β    and ( ) ( ) ( )2 2 2, |σ σ σ=H H H H Hβ β    be two compounded 

priors were the components are specified by the conjugates, 

( ) ( )2 2 2| ~ , , ~ ,c c c c c c ca bσ σ σβ    and ( ) ( )2 2 2| ~ , , ~ , :a bσ σ σH H H H H H Hβ     

( ) ( ) ( ) ( )2 12 
1

| 2 exp ,
2

n

c c c c c c cσ π − ′ ′− = − − −  
β β Σ β    

( ) ( ) ( ) ( )2 12
1

| 2 exp ,
2

 
n

σ π − ′ ′− = − − −  
H H H H H H Hβ β Σ β    

( ) ( )2
2exp ,  ca n c

c c
c

bσ σ
σ

− −  
∝ − 

 
  

( ) ( )2
2exp .  a n bσ σ

σ
− −  

∝ − 
 

H H
H H

H

  

Combining the data likelihoods with the prior specifications and applying Bayes’ Law, 
the joint posteriors are, 



 

( ) ( ) ( ) ( )( )( )2 2 12
2  

1
, | e p 

2
 , x

cn a

c c c c c c c c c
c

y sσ σ
σ

+
− ′ − ′ 

∝ − + − + − 
 

β 1 β β Σ 11 β β 

  

 

( ) ( ) ( )2 2 12
2

1
, | , exp )(( )(

2

n a

y sσ σ
σ

+
− − ′ 

∝ − + − ′ + − 
 

H

H H H H H H H H H
H

β H β β Σ H H β β 

  

The marginalization of these joint posteriors gives, 

( ) ( ) ( )( )
1

21| , ,  
cn a

c c c c c c cy s
+

− +′ − ′ ∝ + − + −  
β 1 β β Σ H H β β 

  

( ) ( ) ( )( )
1

21| , ,  
H

H H H

n a

HH H HH y s
+

− +′ − ′ ∝ + − + −  
β β β Σ H H β β 

  

which are kernels of a multivariate-t distribution with 2n a k+ − −  degrees of freedom. 
Therefore the mean of the parameter estimates (the Bayesian estimators for each 
equation) would be, 

( )

( ) ( )
( )

( ) ( )

11 1

11 1

| ,

ˆ ,

| ,

ˆ .

c c

c c c c

y

b

y

b
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=
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H H
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β 1 β

Σ 11 Σ 11
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
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

 

 
APPENDIX 4 
Sims-Zha Bayesian Method for Dynamic Multivariate Models 
Sims and Zha (1998) considered linear multivariate models of the form A ( L ) y ( t )  +  C  =  
ε ( t ) ,  where y ( t )  is the 1m ×  vector of observations, A ( L )  is a m m× matrix polynomial, L  
is the lag operator and C  is a constant vector that can be generalized to more complicated 
sets of exogenous regressors. Assuming ( ) ( ) ( )| , 0,1t y s s t Nε <  , the likelihood function is, 

( )( ) ( ) ( )1
, 1,..., | ( ) (0) exp ( ) ( ) ( ) ( )

2
T

t

y t t T A L A A L y t C A L y t C′= ∝ − + +
 
 
 

∑  

Rewriting the model in matrix form, 0 +− =YA XA E  and letting,  

,= −  Z Y X  and 0

+

 
=  
 

A
A

A
. 

The likelihood can now be expressed in compact form, 

( ) ( )0| | | exp 0.5T ′ ′ ∝ − ⊗ Y A A a I Z Z a
 

A prior probability density function for a  would be, 
( ) ( ) ( ) ( )( )0 0 0 0; .Hπ π ϕ µ+= −a a a a a  

Where 0( )π  is a marginal distribution of 0a  and ( )ϕ  is the standard normal p.d.f. with 
covariance matrix Σ. The posterior density function of a  is: 

                           



 
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( )

1/2
0 0 0

-1
0 0 0 + 0 0 + 0

| 0 | | |

exp[ 0.5 2 + - H - ].

Tq Hπ

µ µ

−

′′ ′ ′ ′ ′ ′
+ + +

∝

× − ⊗ − ⊗ + ⊗

a a A a

a I Z Z a a I X Y a a I X X a a a a a a

 
 

The a+ coefficient can be read off directly as ( ) ( ) 1
0H −′⊗ +I X X a , and to preserve the 

Kronecker-product structure of the first term, ( )0H = ⊗a B G , where B and G have the 

same order as I and ′X X . In the Litterman (1986) prior the beliefs about the reduced form 
coefficient matrix 1

0
−

+=B A A  are centered on an identity matrix for the top m rows and 
zeros for the remaining rows. This notion can be made concrete by making the conditional 
distribution for +A  Gaussian with mean 0A  in the first m  rows and zero in the remaining 
rows, 1t t txπ +=  .  

 
 

References 
Bolstad, William M. (2004), Introduction to Bayesian Statistics, Wiley-Interscience, John Wiley 

& Sons Publications. 
Brandt, Patrick T., and John R. Freeman (2002), “Moving  Mountains: Bayesian 

Forecasting As Policy Evaluation,” presented at the 2002 Meeting of the Midwest 
Political Science Association, Chicago. 

Cagan, Phillip (1956), “The Monetary Dynamics of Hyperinflation,” in Milton Friedman 
(ed.), Studies in the Quantity Theory of Money, Chicago: University of Chicago Press. 

Canova, Fabio (2007), Methods for Applied Macroeconomic Research, Princeton University 
Press. 

Engsted, Tom (1998), “Money Demand during Hyperinflation: Cointegration, Rational 
Expectations, and the Importance of Money Demand Shocks,” Journal of Macroeconomics, 
Vol. 20, No. 3, pp. 533-552. 

Geweke, John (2005), Contemporary Bayesian Econometrics and Statistics, Wiley Series in 
Probability and Statistics, Wiley-Interscience, John Wiley & Sons. 

Ghosh, Jayanta K., Mohan Delampady, and Tapas Samanta (2006), An Introduction to 
Bayesian Analysis Theory and Methods, Springer Texts in Statistics, Springer Science. 

Gill, Jeff (2007), Bayesian Methods: A Social and Behavioral Sciences Approach, Second Edition, 
Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences. 

Gray, Jo Anna (1984), “Dynamic Instability in Rational Expectations Models: An Attempt to 
Clarify,” International Economic Review, Vol. 25, No. 1, February, pp. 93-122. 

Greenberg, Edward (2008), Introduction to Bayesian Econometrics, Cambridge University 
Press. 

Juseluis, Katarina, and Zorica Mladenovic (2002), High Inflation, Hyperinflation and Explosive 
Roots: The Case of Yugoslavia, Discussion Papers, University of Copenhagen, No. 02-23. 

Koop, Gary (2006), Bayesian Econometrics, John Wiley & Sons Ltd. (reprint with 
corrections).  

Litterman, R (1986), “Forecasting with Bayesian Vector Autoregressions –Five Years of 



 
Experience,” Journal of Business & Economic Statistics, 4, pp. 25-38. 

Marty, Alvin L. (1999), The Welfare Cost of Inflation: A Critique of Bailey and Lucas,” 
Review, Federal Reserve Bank of St. Louis, January, pp. 41-46. 

Morales, Juan Antonio (2010), “La teoría macroeconómica después de la crisis financiera 
internacional de 2007-2009,” Umbrales: Revista del Postgrado en Ciencias del Desarrollo, No. 
21, pp. 15-38. 

Morales, Juan Antonio, and Jeffrey D. Sachs (1989), “Bolivia’s Economic Crisis,” Chapter 2 
in Jeffrey D. Sachs  (ed.), Developing Country Debt and the World Economy, University of 
Chicago Press, pp. 57-80. 

Muth, John F. (1961), “Rational Expectations and the Theory of Price Movements,” 
Econometrica, Vol. 29, pp. 315-335. 

Nielsen, Bent (2008), “On the Explosive Nature of Hyper-inflation Data,” Economics - The 
Open-access, Open-assessment E-Journal, Kiel Institute for the World Economy, Vol. 2, No. 
21, pp. 1-29. 

Nielsen, Bent (2010), “Analysis of Coexplosive Processes,” Econometric Theory, Cambridge 
University Press, Vol. 26, No. 03, pp. 882-915. 

Pastor, Manuel (1991), “Bolivia: Hyperinflation, Stabilization, and Beyond,” Journal of 
Development Studies, Vol. 27, No. 2, p. 211-237. 

Petrovic, P., and Z. Mladenovic (2000), “Money Demand and Exchange Rate 
Determination under Hyperinflation: Conceptual Issues and Evidence from 
Yugoslavia,” Journal of Money, Credit, and Banking, Vol. 32, pp. 785-806. 

Phylaktis, Kate, and Mark P. Taylor (1993), “Money Demand, the Cagan Model and the 
Inflation Tax: Some Latin American Evidence,” The Review of Economics and Statistics, Vol. 
75, No. 1, pp. 32-37. 

Reinhart, Carmen M., and Miguel A. Savastano (2003), “The Realities of Modern 
Hyperinflation,” Finance & Development, June, pp. 20-23. 

Robertson, John C., and Ellis W. Tallman (1999), “Vector Autoregressions: Forecasting 
and Reality,” Economic Review, Federal Reserve Bank of Atlanta, issue Ql, pp. 4-18. 

Sargent, Thomas J. (1977), “The Demand for Money during Hyperinflations under 
Rational Expectations: I,” International Economic Review, Vol. 18, No. 1, February, pp. 59-
82. 

Sargent, Thomas J., and Neil Wallace (1973), “Rational Expectations and the Dynamics of 
Hyperinflation,” International Economic Review, Vol. 14, No. 2, June, pp.  328-350. 

Salemi, Michael K., and Thomas J. Sargent (1979), “The Demand for Money during 
Hyperinflation under Rational Expectations: II,” International Economic Review, Vol. 20, 
No. 3, pp. 741-758. 

Sachs, Jeffrey D. (1987), “The Bolivian Hyperinflation and Stabilization,” American Economic 
Review Papers & Proceedings, Vol. 77, No. 2, pp. 279-283. 

Sims, Christopher A. (1988), “Bayesian Skepticism on Unit Root Econometrics,” Journal of 
Economic Dynamics and Control, Elsevier, Vol. 12, Nos. 2-3, pp. 463-474.  

Sims, Christopher (2007), Bayesian Methods in Applied Econometrics, or, Why Econometrics 
Should Always and Everywhere Be Bayesian, Princeton University. 

Sims, Christopher A., and Tao Zha (1998), “Bayesian Methods for Dynamic Multivariate 
Models,” International Economic Review, vol. 39, No. 4, November, pp. 949-968. 



 
Taylor, Mark P. (1991), “The Hyperinflation Model of Money Demand Revisited,” Journal 

of Money, Credit and Banking, Vol. 23, No. 3, pp. 327-351. 



CENTER FOR LATIN AMERICAN MONETARY STUDIES
Regional Association of Central Banks




