

FISCAL SUSTAINABILITY ASSESSMENT FOR SURINAME 1978-2017

A FISCAL REACTION FUNCTION APPROACH

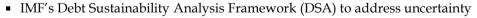
CEMLA Joint Research of Central Banks, 2019 Mexico City, 5th and 6th August 2019

> Tjon Kie Sim-Balker, Peggy Mungroo, Albert Central Bank of Suriname Research Department

> > 1

Outline Presentation

- ▶ Introduction
- ► Debt in Suriname
- ► Fiscal Sustainability and the Fiscal Reaction Function
- ► Fiscal Sustainability under Uncertainty
- ► Data, Methodology & Results
- ▶ Key Findings

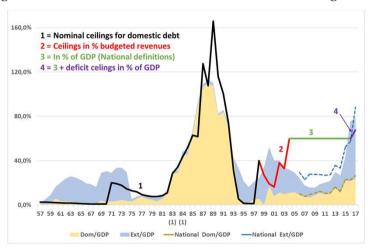


Introduction

Motivation:

Government actions that would hint at unsustainable fiscal policy in the past:

- Struggle of Governments to maintain debt levels and ceilings and
- recent rise in debt.
- ► Objective:
 - "To asses if fiscal policy was sustainable during 1978-2017
- ► Approach:
 - Fiscal Reaction Function: is employed to model fiscal behavior by analyzing the response of primary balances to debt levels.
 - OLS, VAR, TAR, VECM & GMM

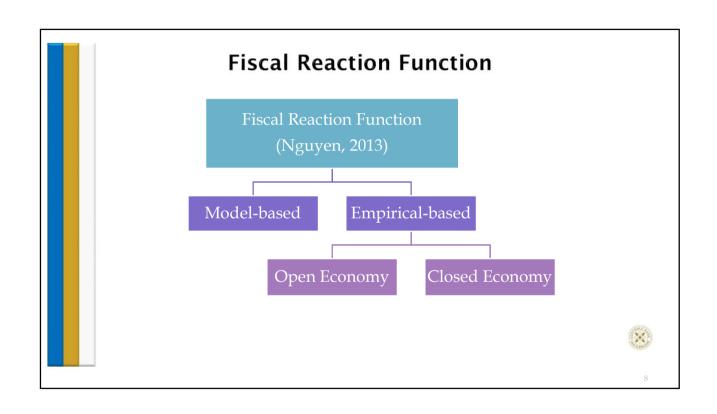


Debt in Suriname:

Debt limits and Debt Levels

Struggle of Governments to maintain debt levels and ceilings.....

±


Debt in Suriname (cont'd): **Debt-creating Flows** On average real interest rate contributed to a decrease in total debt while the primary balance and exchange rate depreciations contributed to an increase..... (in % of GDP 20 15 10 5 -10 -15 -20 -25 2010-2017 1978-1985 1986-1993 1994-2001 2002-2009 Primary deficit Real GDP growth Real interest rate Exchange rate depreciation Residual 5/ -- Change in gross public sector debt

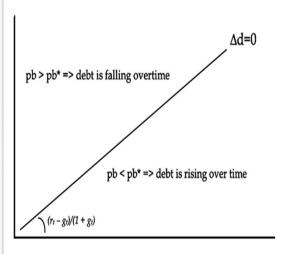
Approaches to Asses Fiscal Sustainability

- ▶ Different approaches of fiscal sustainability assessment:
 - Accounting approach (Buiter, 1985):
 - IGBC approach (Blanchard et al., 1990)
 - Fiscal Reaction Function approach (Bohn, 1998, 2007)
 - DSGE models
- ► Fiscal Reaction Function Approach

Fiscal Reaction Function is a tool to model fiscal behavior by analyzing the response of the primary balance to past debt.

Fiscal Reaction Function (cont'd)

- ▶ Bohn, 1998:
- Basic equation: $s_t = \rho d_t + \alpha \cdot Z_t + \varepsilon_t$
- Fiscal policy is sustainable if the response coefficient in the FRF (ρ) is positive and significant. Solvency condition is met.
- ► Additions to Bohn's theory:
- Sustainability requires a stronger condition: a strong enough response of primary balance to public debt;
- Not the level of the primary balance is important but its sensitivity to a change in public debt to converge to a steady state


Fiscal Reaction Function (cont'd)

- ▶ Burger et al, 2007, 2011:
- Basic equation: $(B/Y)_t$ $^{Actual} = \alpha_I + \alpha_2(B/Y)_{t-1}$ $^{Actual} + \alpha_3(D/Y)_{t-1} + \varepsilon_t$
- ▶ Modifications to the basic equation:
- $(B/Y)_t$ Required = α_t Required $(D/Y)_{t-1} = [(r_t g_t)/(1 + g_t)](D/Y)_{t-1}$
- Primary balance required to ensure a stable debt/GDP ratio
- ► Fiscal policy is sustainable when:
- $\alpha_3/(1-\alpha_2) \ge \alpha^{Required} = (r_t g_t)/(1+g_t)$

Fiscal Sustainability

 $(r_t - g_t)/(1 + g_t)$: presents the slope of the line of pb's which keeps debt stable over time ($\Delta d=0$)

Strong response of pb: $(r_t - g_t)/(1 + g_t) \ge (r-g)$ Weak response of pb: $(r_t - g_t)/(1 + g_t) < (r-g)$

If: r > g: debt is rising r < g: debt is falling

However, the case "r < g" is more likely to occur in emerging market economies making the debt look sustainable.

11

Fiscal Sustainability under Uncertainty

- ► Sources of uncertainty in the case of shocks:
- Uncertainty about interest rates (r) and growth (g) => (r-g)
- Uncertainty about fiscal behavior (primary balance, pb)

► Stress Tests and Stochastic Simulations (fan charts)

Data, Methodology & Results

- ▶ Data:
 - Periodicity: Annual data from 1978-2017
 - Sources: Central Bank of Suriname, Ministry of Finance, Suriname Debt Management Office, General Bureau of Statistics, Planning Office, D. Djemisi (2013)
- ► Fiscal Reaction Function:
 - OLS, VAR & GMM for stationary data
 - Interest-Growth Differential Rule
 - Cubic OLS & TAR for Nonlinearity
 - VECM for non-stationarity
- ► IMF DSA Framework (Still work in progress)

► The Fiscal Reaction Model:

$$pb_{t} = \beta_{0} + \beta_{1}pb_{t-1} + \beta_{2}pb_{t-2} + \beta_{3}td_{t-1} + \beta_{4}X_{t(-1)} + \mu_{t}$$

- pb = Primary Balance
- td = Total Debt
- X = Other variables
- β = parameters
- μ = error term
- t = time

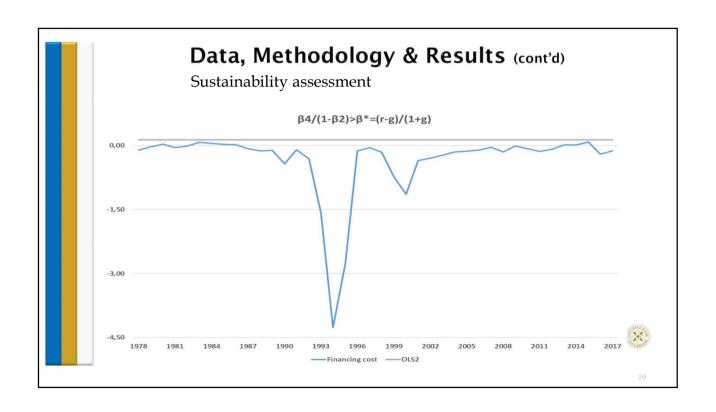
► Applied Variables and Unit Root

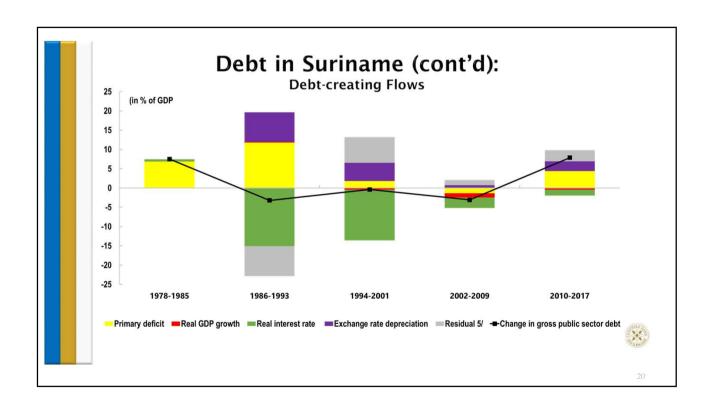
Name	Description	URT: ADF, PF 1957-2017	% IPS 1978-2017	URT: Break point 2001
pb	Primary Balance/ _{GDP}	I(0)	I(1)	
td	Total Debt $/_{GDP}$	I(1)	I(1)	1(0)
cab	Current Account Balance/ $_{GDP}$	I(0)	I(0)	
g_var	$\frac{Expenditure/_{GDP}}{(Expenditure/_{GDP})^{Trend}} - 1$	I(0)	I(0)	
xch	${Exchange\ rate_{t}}/{Exchange\ rate_{t-1}}-1$	I(0)	I(0)	
NHAS	Dutch-Aid Dummy			
Elect	Election Dummy			
g	$\left(\frac{GDP_t}{GDP_{t-1}}\right) - 1$			
r	$i - \pi \mid i = \frac{Government\ Interest\ Paid_t}{Total\ Government\ Debt_t} \mid$			
	$\pi = rac{GDP_deflator_{ ext{t}}}{GDP_deflator_{ ext{t-1}}} - 1$			

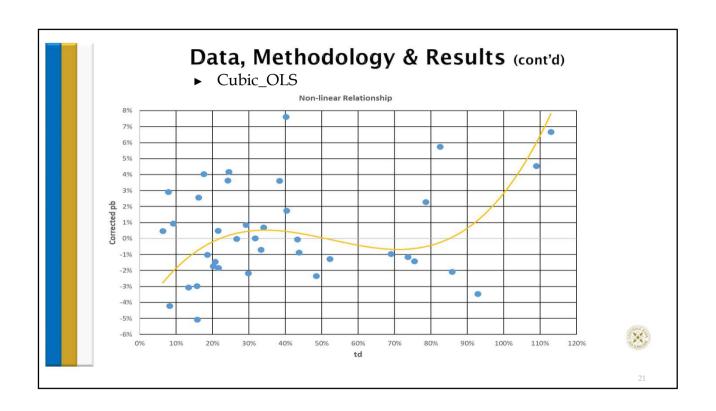
► Results on Fiscal Variables

	OLS equation1	OLS equation2	OLS equation^3	GMM	TAR	VAR PB-equation
С	-0.024	-0.018	-0.048	-0.020	-0.047	-0.011
	0.093*	0.088*	0.058**	0.119	0.004***	[-0.833]
pb _{t-1}	0.616	0.526	0.493	1.346	0.470	0.876
	0.000***	0.000***	0.000***	0.000***	0.001***	[4.827]
pb _{t-2}	0.489	0.424	0.455			
	0.013**	0.006*	0.003***			
td _{t-1}	0.087	0.062	0.359	0.089		
	0.058*	0.075*	0.061*	0.091*		
(td _{t-1}) ²			-0.756			
	-		0.058*			
(td _{t-1}) ^{^3}			0.481			
			0.042*			
(td _{t-1}) < 0.404					0.239	
					0.000***	

► Results on Other Variables


	OLS equation1	OLS equation2	OLS equation^3	GMM	TAR	VAR PB-equation
cab _{t-1}		0.160	0.128			0.158
		0.020**	0.055*			[1.746]
g_var		-0.160	-0.175			
		0.000***	0.000***			
g_var _{t-1}						0.140
						[2.287]
хсн		-0.002	-0.002			
		0.008*	0.044**			
XCH _{t-1}						0.003
						[2.395]
Elect	-0.043	-0.032	-0.026		-0.027	
	0.041**	0.043**	0.089*		0.083*	
NHAS					-0.044	
					0.008***	




- ► Results on VECM
 - There is no cointegration

Johanson Cointegration Summary test							
	0.05 level*) Num	ber of Cointe	grating Relati	ons by Model			
Data Trend: None None Linear Linear Quadrati							
Test Type	st Type No Intercept		Intercept	Intercept	Intercept		
	No Trend	No Trend	No Trend	Trend	Trend		
Trace	2,0	1,0	2,0	1,0	2,0		
Max-Eig	0,0	0,0	0,0	0,0	0,0		

Preliminary Findings

- Inertia of the primary balance seems to last two periods back
- There seem to be:
 - A positive relationship between the primary balance and lagged debt.
 - Non-linearity between primary balance and lagged debt
- Although the interest-growth differential rule indicated a sustainable fiscal policy for Suriname, the sources contributing to that sustainability seem to mostly come from negative real interest rates and thus inflation
- ► Further analysis, are still a work in progress

Appendix
► Results on Model Specification

	OLS	OLS	OLS	GMM	TAR	VAR
	equation1	equation2	equation^3			PB-equati
Adjusted R ^{^2}	0,550	0,758	0,780	0,208	0,754	0,636
Durbin-Watson	1,778	1,471	1,517	2,989	1,781	N/A
Serial Correlation Tests:	-	-	-	N/A	-	-
Heteroskedasticity Test:	-	-	-	N/A	-	-
Ramsey RESET Test	-	-	-	-	-	N/A
GMM: Instruments	-	-	-	$PB_{t-2} \big TD_{t-3}$	-	-
GMM: Difference in J-stats	-	-	-	-	-	-
GMM:Cragg-Donald F-stat:	-	-	-	[7,801]	-	-
TAR: Break	-	-	-	0.404	-	-
Var: Inverse Roots	N/A	N/A	N/A	N/A	N/A	-
β4/(1-β2)-rule	0,226	0,131	0,707	-0,257	0,452	N/A