Data visualization and financial stability

Mark D. Flood Department of Finance University of Maryland

Center for Latin American Monetary Studies (CEMLA) Course on Financial Stability Mexico City, 18 September 2019

What is data visualization?

Visualization as a human-computer interface

- Cognitive amplification to exploit the strengths of human perception
 - Humans as pattern recognizers
 - "A picture is worth 1,000 words"

Core Functionality

- Visual rendering of data computer presents to the (human) user
 - Typically 2-dimensional
 - 3-dimensional (even multimedia) data renderings are possible
- User interaction user controls the computer
 - Zoom
 - Filter
 - Details on demand

Classification of data visualization techniques

	Non-interactive	Interactive
Static	No user input after initial rendering, and image does not change. "Fixed." Example: Newspaper infographic	Ongoing user input, but rendering does not change between input events. Example: Spreadsheet chart
Dynamic	No user input after initial rendering, but image may change. Example: Animated GIF	Ongoing user input, and rendering may change between input events. Example: Video game

Institutional context for visualization

Core functions of visualization

- Sensemaking
 - Data exploration
 - Trial-and-error analytics
 - Compressed decision iterations
- Decision-making
 - Formal authority
 - Common knowledge requirement
 - Agendas and minutes

- Rulemaking
 - Formal authority
 - Laws, regulations, interpretations
 - Notice and comment
- Transparency
 - Audience-specific renderings
 - Common knowledge requirement
 - Emphasize facts over interpretations

Image: Wikipedia

Common types of financial data

Interactive visualization

Putting the human "in the loop"

- **<u>Shneiderman's (1996)</u>** seven data types:
 - 1. One-dimensional
 - "Linear" data e.g., text documents, source code, alphabetical lists
 - 2. Two-dimensional
 - Planar data e.g., geographic maps, floor plans, document layout
 - 3. Three-dimensional
 - Real-world objects e.g., molecules, anatomy, buildings
 - 4. Temporal
 - Specialization of one-dimensional data, with a time-series history
 - 5. Multidimensional
 - Data as points in *n*-space e.g., relational and statistical databases
 - 6. Tree
 - $\circ~$ Simple hierarchies, with one parent for each child node
 - 7. Network
 - Graph structures with arbitrary connections between nodes

Visualization for decision-making

• Federal Open Market Committee (FOMC)

- Decisions on short-term monetary policy
- Confidential briefing materials ("Bluebook"), September 2007
- Absence of interpretation or narrative
- Emphasis on uncertainty, both historical and forward-looking

Image: Federal Reserve

Visualization for transparency

Narrative visualization

The Lead-Up to the Collapse of MF Global Holdings Ltd.

OFR Annual Report (2014)

Data – Information – Knowledge – Wisdom (DIKW)

Two views of the DIKW transformation

- Data raw observations, typically factual
- Information data augmented with meaning and/or interpretation
- Knowledge information in context (cultural, historical, organizational)
- Wisdom abstracted, effective understanding of patterns in knowledge

Progressing to Wisdom (<u>Clark, 2010</u>)

Winnowing to Wisdom (Hey, 2004)

Visualizations for diverse purposes – time series data

Transparency

Foreign exchange and interest rates Quax, et al., (2013)

Civilian unemployment rate Federal Reserve (2013)

Visualizations for diverse purposes – financial stability maps

Sensemaking

Transparency

Self-organizing financial stability map VisRisk (2015)

Financial Stability Monitor Office of Financial Research (2015)

Interactive visualization

Interactive types for the human "in the loop"

• Shneiderman's (1996) Mantra

"Overview first, zoom and filter, then details-on-demand"

- The seven tasks:
- 1. Overview
 - $\circ~$ Gain an overview of the entire collection
- 2. Zoom
 - Zoom in on items of interest
- 3. Filter
 - Filter out uninteresting items
- 4. Details-on-demand
 - $\circ~$ Select an item or group and get details when needed
- 5. Relate
 - View relationships among items
- 6. History
 - Keep a history of actions to support undo, replay, and progressive refinement
- 7. Extract
 - Allow extraction of sub-collections and of the query parameters

Visual analytics

Formalizing visual interaction

- Analytical reasoning facilitated by interactive visual interfaces
- Combines:
 - Interactive visualization
 - Automated analysis
- Exploits:
 - Human visual perception
 - Expert judgment
- Rapid-feedback, iterative analysis
 - Software-assisted
 - Requires development of a software model

Human "in the loop" analysis Sarlin (2016)

Perceptual Processing

Exploiting human perception

Example: Representing relationships

- Connectedness is more powerful than:
 - Proximity, matched color, matched size, matched shape

Pre-attentive features

Features with visual salience

Orientation

• Shape

• Size

Color

Convex/concave

Enclosure

• Shape

Image source: Ware (2013)

Exploiting human perception – Visual salience

Example: Color contrast "pops out"

• Exploits pre-attentive channels for color

Find the cherries in the tree

Image source: Ware (2013)

Visual salience failure

Find the orange square

Competition for pre-attentive channels → sequential search

Image source: Cross (2008)

Texture recognition

Some texture distinctions are available pre-attentively

• Repetitive small-scale patterns in larger-scale regions

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Image source: Tuceryan and Jain (1998)

Contour recognition

Distinction in edge sharpness focuses attention

• Sharpness is captured pre-attentively

Gestalt perception

Does the yellow ball obscure a rectangle?

• **Closure**: Inference of integral forms (even when absent)

Gestalt mechanisms for pattern perception

Connectedness dominates the other mechanisms

Gestalt symmetry and similarity

Similar shapes are grouped

• Regular alignment creates an axis of symmetry

Lightness and Brightness

Measured versus perceived light

- Luminance
 - Physically measured amount of light
 - Emitted or reflected by a source
- Brightness
 - Perceived amount of light
 - Typically light emitted by a source
- Lightness
 - Perceived amount of light
 - Typically light reflected by a source

Simultaneous Brightness

Visual Semiotics

Study of symbols and their meaning

- How do "signs" create meaning?
 - Systems of signs are social constructs that impart meaning
- Signifier physical representation that conveys meaning
 - Icon signifier that resembles the signified
 - Symbol signifier with no resemblance
 - Index clue that only occurs in conjunction with the signified
- Signified personal interpretation of a signifier
 - Paradigm set of signifiers or signifieds with shared features or functionality
 - Syntagm framework of relationships among the signifiers (for example, syntax of a language)

Visual semiotics

- Focus on visual signs
 - Color, texture, orientation, movement, etc.
 - Physical juxtaposition of signifiers on the page/screen

"CLOUD" Symbol

Semiotics in practice

Mixing shape and meaning

- Icons are representational can carry socialized meaning
 - Useful in pedagogical contexts, as a shorthand
- Typographic glyphs are typically phonetic
- Abstract symbols are useful as neutral indicators of data

"Chart Junk"

Optimize the "signal-to-noise" ratio in your visualizations

Every rendered element should convey a specific meaning

- Data or metadata attributes
- When in doubt, omit it
- Volume of "ink" should be proportional to the importance of the element
- Fill the canvas it is precious
 - Area is O(x²) for x = length

Maximizing data density

Maximizing decoration

Juxtaposition as a source of meaning – Time-series plots

What would FRED do? (You probably should do that too)

https://fred.stlouisfed.org

Juxtaposition as a source of meaning – Small multiples

Reading suggestions

- C. W. Choo (2005), *The Knowing Organization: How Organizations Use Information to Construct Meaning, Create Knowledge, and Make Decisions*, Oxford U. Press.
- M. Flood, V. Lemieux, M. Varga, and B. W. Wong (2016), "<u>The application of visual analytics to financial</u> <u>stability monitoring</u>," J. of Financial Stability, 27, 180-197.
- D. Keim, J. Kohlhammer, G. Ellis and F. Mansmann (eds.) (2010), <u>Mastering the Information Age –</u> <u>Solving Problems with Visual Analytics</u>, Eurographics Association.
- S. Ko, I. Cho, S. Afzal, C. Yau, J. Chae, A. Malik, K. Beck, Y. Jang, W. Ribarsky and D. Ebert (2016), "<u>A</u> <u>Survey on Visual Analysis Approaches for Financial Data</u>," *Computer Graphics Forum*, 35(3), 599-617.
- V. Lemieux, B. Fisher and T. Dang (2014), "<u>The visual analysis of financial data</u>," in: Brose, Flood, Krishna and Nichols (eds.), *The Handbook of Financial Data and Risk Information: Vol. 2: Software and Data*, Cambridge U. Press, 279–326.
- P. Sarlin (2016), "<u>Macroprudential oversight, risk communication and visualization</u>," J. of Financial Stability, 27, 160-179.
- P. Sarlin and T. Peltonen (2013), "<u>Mapping the State of Financial Stability</u>," J. of International Financial Markets, Institutions and Money, 26, 46–76.
- T. Samara (2017), <u>Making and Breaking the Grid, 2nd Edition: A Graphic Design Layout Workshop</u>, Rockport Publishers.
- B. Shneiderman, C. Plaisant, M. Cohen and S. Jacobs (2017), <u>Designing the User Interface: Strategies for</u> <u>Effective Human-Computer Interaction</u>, 6th ed., Prentice Hall.
- E. Tufte (2001), *The Visual Display of Quantitative Information*, 2nd ed., Graphics Press.
- C. Ware (2013), *Information Visualization: Perception for Design*, 3rd ed., Morgan Kaufmann.
- L. Wilkinson (2005), *The Grammar of Graphics*, 2nd ed., Springer Verlag.