

What this paper does

- Estimate impact of extreme rainfall episodes on Philippine banking sector performance from 2014 to 2018
- Construct regional quarterly rainfall damage index (RDI) based on data of 53 weather stations across the Philippines
- Compile regional quarterly branch-level bank indicators (deposits by type, total loans, non-performing loans, equity, profitability indicators) and macroeconomic indicators (regional Gross Domestic Product)
- Examine persistence of RDI shocks on regional branch-level bank and growth indicators
- Offer implications for BSP policy particularly on sustainable finance

What this paper does <u>not</u> do

• Scope

- Macroeconomic, monetary policy and social impacts
- o Transition risk, or how the world will evolve towards a low carbon economy
- Impact on prudential indicators capital adequacy ratio (CAR), liquidity standards (liquidity coverage ratio, net stable funding ratio, minimum liquidity ratio and probability of default
- Detailed impact on real sector (aggregate economy investments, consumption, trade)

Technical details

- Full/complete equilibrium perspective
- More robustness checks on some indicators (bank risk-taking activities, deposit generation)

Motivation fits into recent empirical research

The Philippines consistently in one of the more vulnerable countries to natural hazard risk, climate change risk and natural disaster risk

Impact of natural disasters on banking sector performance

- Deposit withdrawals and dry up in non-deposit funding were main drivers of lending slowdown following extreme hurricane, not adverse shocks to profitability, loan defaults and bank capital (Brei et al 2019)
- Following flooding in Pakistan, banks disproportionately reduced credit to new and less-educated borrowers (Choudhary and Jain 2017)
- Natural disasters increase likelihood of bank defaults and depends on financial regulation, a country's financial and economic development, and the size and magnitude of the disaster (Klomp 2014)
- El Niño related flooding in Peru resulted in large loan losses that caused lender to contract credit, hindering economic recovery (Collier 2014).

Studies on impact on the Philippine banking sector relatively scant

- Positive association between natural disasters and median bank deposit interest rates across bank branches (Campipi et al 2018)
- This paper adds to empirical studies by constructing a rainfall damage index and estimating its impact on regional bank branch-level data
- O This is a first in the Philippines

Top 10 Countries with Natural Hazard and Climate Risk 1/ (Ranking 1 to 10; 1 means the most vulnerable)

Sources: INFORM Global Risk Index 2019; Global Climate Risk Index 2019; UN-World Risk Index. 1/ Natural Hazard Risk Index is based physical exposure to natural hazards (actual and relative); Climate Risk Index is based on to what extent countries and regions have been affected by impacts of weather-related loss events. UN Natural Disaster Risk Index is based on theNatural Disaster vulnerability, susceptibility, lack of coping capacities and lack of adaptive capacities.

Source of Table : IMF Philippine Mission Team Presentation, 18 Nov 2019, BSP

The rest of presentation

- 1. Database
- 2. Empirical model and estimation method

6

- 3. Robustness checks
- 4. Results
- 5. Conclusion implications for BSP policy

1. A Rainfall Damage Index (RDI) for the Philippines (2-5)

$$f = rac{v_n^3}{1 + v_n^3}$$
 , (eq. 1)

2

where f is the fraction of the property value lost and,

$$v_n \equiv rac{MAX[(V-V_{thresh})}{V_{half}-V_{thresh}}$$
, (eq. 2). ,

where V is the actual rainfall amount for , V_{thresh} is the rainfall at and below which no damage occurs, and V_{half} is the rainfall amount at which half the property value is lost. V_{thresh} is obtained from climatological normal amount of rainfall in a month for each region as prescribed by PAGASA. V_{half} is computed as two standard deviation (based on historical amount of rainfall that produced massive flooding) above the climatological normal for each region

1. Branch-level bank-specific indicators (BRIS) (3-5)

	No. of	Mean	Std. Dev.	Min	Max	
Variables	Observations		(in M PhP)			
Total Loans	122,612	1,040.4	16,376.9	0.0	1,018,200.9	
Total Deposit Liabilities	167,036	1,079.9	4,970.5		252,082.3	
Non-Performing Loans	167,030	15.7	241.2	(246.9)	12,929.0	
Net Profit	44,923	72.0	983.5	0.0	62,545.7	
Net Income	66,654	77.0	1,281.8	0.0	111,747.0	
Net Interest Expense	165,960	23.8	485.0	(240.6)	66,380.7	
Total Equity	46,278	614.2	8,498.1	0.0	357,375.7	
Return on Assets (in %)	45,106	0	2	-	161.7	
Rainfall Damage Index	166,750	11	22	-	99.5	
Regular Peso Savings Deposit	166,948	271.0	989.0	(82.0)	76,222.5	
Peso Time Savings Deposit: Less than 30 days mate	urity					
Below PhP 50,000	5,131	0.1	0.8	(49.9)	30.0	
PhP 50,000- less than PhP100,000	4,842	0.7	16.5	0.0	1,110.0	
PhP 100,000- less than PhP500,000	7,316	2.9	13.0	0.0	840.7	
PhP 500,000- less than PhP 1 million	5,534	4.0	26.0	0.0	1,411.4	
Over PhP 1 million	8,371	379.3	2,135.3	(3.0)	62,708.9	
Peso Time Savings Deposit: 1 year maturity						
Below PhP 50,000	29,403	0.1	0.2	0.0	8.5	
PhP 50,000- less than PhP100,000	32,107	0.2	0.3	0.0	14.4	
PhP 500,000- less than PhP 1 million	29,745	2.0	3.6	0.1	420.9	
Over PhP 1 million	28,711	23.1	285.4	0.1	18,373.9	
Peso Time Savings Deposit: Over 1 year maturity						
Below PhP 50,000	10,489	0.3	7.3	(0.0)	501.2	
PhP 500,000- less than PhP 1 million	26,241	9.6	26.6	0.1	838.2	
Over PhP 1 million	26,920	72.9	361.9	(0.0)	16,933.2	

Summary Statistics of Variables Used, March 2014-December 2018

- Quarterly data from Branch Regional Information System by municipality, province, region
- Data from 92,000 banking units
- Major funding source total deposits classified by type, bucket size and by maturity (regular peso savings and peso time-savings deposits with less than 30 days, 1 year and over 1 year maturity)
- Loan and asset quality total loans and non-performing loans
- Capital total equity
- Profitability net profit, net income, net interest expense, return on assets

1. Quarterly branch-level bank-specific indicators (BRIS) (4-5)

10

	No. of	Mean	Std. Dev.	Min	Max
Variables	Observations		(in M PhP)	
Total Loans	122,612	1,040.4	16,376.9	0.0	1,018,200.9
Total Deposit Liabilities	167,036	1,079.9	4,970.5		252,082.3
Non-Performing Loans	167,030	15.7	241.2	(246.9)	12,929.0
Net Profit	44,923	72.0	983.5	0.0	62,545.7
Net Income	66,654	77.0	1,281.8	0.0	111,747.0
Net Interest Expense	165,960	23.8	485.0	(240.6)	66,380.7
Total Equity	46,278	614.2	8,498.1	0.0	357,375.7
Return on Assets (in %)	45,106	0	2	-	161.7
Rainfall Damage Index	166,750	11	22	-	99.5
Regular Peso Savings Deposit	166,948	271.0	989.0	(82.0)	76,222.5
Peso Time Savings Deposit: Less than 30 days mate	urity				
Below PhP 50,000	5,131	0.1	0.8	(49.9)	30.0
PhP 50,000- less than PhP100,000	4,842	0.7	16.5	0.0	1,110.0
PhP 100,000- less than PhP500,000	7,316	2.9	13.0	0.0	840.7
PhP 500,000- less than PhP 1 million	5,534	4.0	26.0	0.0	1,411.4
Over PhP 1 million	8,371	379.3	2,135.3	(3.0)	62,708.9
Peso Time Savings Deposit: 1 year maturity					
Below PhP 50,000	29,403	0.1	0.2	0.0	8.5
PhP 50,000- less than PhP100,000	32,107	0.2	0.3	0.0	14.4
PhP 500,000- less than PhP 1 million	29,745	2.0	3.6	0.1	420.9
Over PhP 1 million	28,711	23.1	285.4	0.1	18,373.9
Peso Time Savings Deposit: Over 1 year maturity					
Below PhP 50,000	10,489	0.3	7.3	(0.0)	501.2
PhP 500,000- less than PhP 1 million	26,241	9.6	26.6	0.1	838.2
Over PhP 1 million	26,920	72.9	361.9	(0.0)	16,933.2

Summary Statistics of Variables Used, March 2014-December 2018

- More variation seen in total loans, total equity, total deposit liabilities, peso-time savings deposits with less than 30 days and over PhP 1 million, regular peso savings, net income
- Temporary regulatory relief given between 2014 and 2018 - 11 for damaging typhoons mostly in Visayas and Northern Luzon regions (BSP Circular 1017 in October 2018)

1. A Snapshot of the Analytical Framework (5-5)

<u>Rainfall Damage Index (53 weather stations across</u> <u>municipalities/provinces/regions)</u>

Quarterly Data					
Regions	<u>Avg. Rainfall (</u> in mm)	<u>Avg. Deposits (</u> in Bil Pesos)	<u>Avg. Loans (</u> In Bil Pesos)	<u>Avg. Net</u> <u>Profit</u> (In Bil Pesos)	
1-Ilocos Region	241.56	501.41	107.96	0.75	
2- Cagayan Valley	165.77	412.56	181.72	0.90	
3-Central Luzon	287.02	595.95	190.91	2.04	
4A-CALABARZON	180.01	615.62	132.07	(1.56)	
4B-MIMAROPA	228.41	456.97	146.55	4.26	
5-Bicol Region	273.28	470.98	150.49	2.68	
6-W. Visayas	176.33	608.81	167.48	(0.10)	
7-C. Visayas	118.71	882.12	350.38	3.30	
8-E. Visayas	355.67	640.85	168.25	2.72	
9-Zamboanga	175.92	604.43	151.73	(0.78)	
10-N. Mindanao	141.18	557.11	178.05	0.21	
11-Davao Region	150.78	674.57	280.75	12.23	
12-SOCCSARGEN	119.93	586.76	283.45	3.88	
CAR	451.33	818.29	106.70	(2.02)	
CARAGA	282.78	508.99	172.75	1.93	
NCR	180.83	2,294.28	2,238.32	27.88	

Branch-level banking sector quarterly data across municipalities/provinces/regions)

2. Empirical model and estimation method

Dynamic Panel GMM, March 2014-December 2018

 $BankIndicators_{b,t} = \alpha_{b,t} + \sum_{n=1}^{4} \beta_n RainIndex_{b,t-n} + \sum_{n=1}^{4} \beta_n RainIndex_b X RainIndex_{b,t-n} + \varepsilon_{b,t}$, (eq. 3)

where **BankIndicators**_{*b*,*t*} is a vector of bank variables of branch *b* at time *t* ; **RainIndex**_{*b*,*t*} is the constructed rainfall damage index per region which is applied to branch *b*, and **Rainfall X Rainfall**_{*t*-*n*}, is the interacted variable of contemporaneous rainfall index with its lagged values.

12

Panel Structural VAR, March 2014-December 2018

Cholesky ordering: RainIndex $_{b,t}$ \implies quarterly regional GDP growth $_t$ \implies BankIndicators $_{b,t}$

Shock from rainfall event is expected to affect *production of agriculture and fisheries sector*, which in turn affects regional GDP growth. Regional GDP growth acts as a proxy for income and economic activity, which in turn, can affect bank performance.

3. Robustness checks

- Descriptive statistics checked for each variable used, including presence of outliers
- Coefficients significant at 5% and 10% (few runs) levels of significance
- Final regressions robust against different specifications of dependent and independent (levels vs growth)
- Different ordering of Structural Panel VAR used
- Alternative estimation method (Fixed Effect Model, Least Squares regression)
- Standard errors of regression, serial correlation and Hansen tests are checked

4. Results (1-3): Largely confirm other findings on impact of extreme weather conditions

	Dependent Variable				
			DLOG (NPL)		ROA
Explanatory Variables	(120/(10)		(111 2)		
Dependent					
<i>Variable</i> (-1)	-0.003	-0.305	-0.197***	-0.506	-0.240***
RFALL_INDEX	0.330	-0.013**	0.033**	-0.080	-0.011*
RFALL_INDEX(-1)	0.240	-0.007	0.031**	-0.027	-0.017
RFALL_INDEX(-2)	0.510*	-0.008	0.068***	-0.10**	-0.016**
RFALL_INDEX(-3)	-0.346	0.019	-0.001	0.023	0.036
RFALL_INDEX(-4)	-0.551**	0.008	0.015	-0.125	0.039
RFALL x RFALL(-1)	0.011	0.000	-0.0004	-0.001***	0.001
RFALL x RFALL(-2)	-0.024***	0.001*	-0.002*	0.001	0.002
RFALL x RFALL(-3)	0.002	0.000	0.0001	-0.001	-0.001
RFALL x RFALL(-3)	0.020***	0.000	0.0003	0.002*	-0.002*
Observations	61,704	92,499	37,256	17,744	92,282
	2015Q4-	2015Q4-	2015Q4-	2015Q4-	2015Q4-
Period	2018Q4	2018Q4	2018Q4	2018Q4	2018Q4
Arellano-Bond serial correlation	0.040				0.050
test	0.012	0.029	0.388	0.493	0.050
Hansen test	0.516	0.185	0.444	0.384	0.896

Table : Panel GMM Main Estimation Results , Q12014-Q42018

Legend: * p<.05; ** p<.01; *** p<.001. Source of estimates: Authors

- Extreme rainfall episodes have direct negative impact on growth of total loans, total deposit liabilities, NPLs, net profit and return on assets, with lags
- Impact on growth of total loans appear to have the biggest negative impact
- Impact on growth in total deposits and ROA on a contemporaneous manner
- Impact on growth of equity not significant implies that bank capital remains strong against impact of extreme rainfall episodes

4. Results (2-3): Results robust against alternative estimation method

- Results are consistently robust using fixed effects regression
- Extreme rainfall episodes have direct negative impact on main types of deposits- regular peso savings (larger impact) and peso time deposits across maturity

				Dependent Va	riable/s (DV)			
					DLOG (Non-			DLOG
	DLOG (Deposit	DLOG (Total	DLOG (Net	DLOG (Net	Interest			(Operating
	Liabilities)	Loans)	Interest Income)	Profit)	Expense)	DLOG (NPL)	ROA	Income)
DV (-1)	0.0453***	0.0205***	0.0657***	0.0832***	-0.0659***	0.0318**	-0.0284***	0.0376***
rfall_index	-0.0002***	0.0000	-0.0005	0.0001	0.0032***	-0.0003	-0.0001	-0.0003
rfall_index (-1)	-0.0002***	-0.0005*	0.0035***	0.0037***	0.0048***	-0.0002	-0.0003**	0.0031***
rfall_index (-2)	-0.0002***	0.0011***	-0.0015***	-0.0016***	0.0005***	-0.0010**	-0.0003*	-0.0013***
rfall_index (-3)	-0.0002***	0.0011***	0.0081***	0.0066***	0.0107***	-0.0001	0.0000	0.0083***
rfall_index (-4)	-0.0001***	0.0004	-0.0066***	-0.0063***	-0.0050***	-0.0003	-0.0001	-0.0053***
rfall_L1	0.0000	0.0000***	-0.0001***	-0.0002***	-0.0002***	0.0000	0.0000	-0.0001***
rfall_L2	0.0000	-0.0000***	0.0000	0.0000***	-0.0000**	0.0000	0.0000	0.0000*
rfall_L3	0.0000***	0.0000	-0.0000***	-0.0000**	-0.0001***	0.0000	0.0000	-0.0000***
rfall_L4	0.0000	0.0000**	0.0001***	0.0000***	0.0001***	0.0000	0.0000	0.0001***
Ν	102731	71123	35815	23235	102132	43697	102640	53598
F	19.52	14.06	430.4	150.4	999.1	1.716	4.253	346.1
Prob > F	0.0000	0.0000	0.0000	0.0000	0.0000	0.0798	0.0000	0.0000
r2_a	0.001	0.00097	0.08091	0.0522	0.06457	0.000073	0.000004	0.04538
legend . * nr 05 . *	* n< 01 · *** n< 001							

Table: Results of Fixed Effects Estimation

legend: * p<.05; ** p<.01; *** p<.00

	DLOG (Regular			
Variable	Peso Savings)			
rfall_index	-0.001***			
rfall_index1	0.001***			
rfall_index2	-0.001***			
rfall_index3	0.0000			
rfall_index4	0.0000			
rfall_L1	-0.000***			
rfall_L2	0.000***			
rfall_L3	0.0000			
rfall_L4	0.000***			
_cons	0.052***			
Legend: * p<.1; ** p<.05; *** p<.01				

4 5 6 7 .

Source of Panel VAR runs: Authors.

Figure: Impulse response of bank variables from rainfall shocks

5. Conclusion: Implications for BSP policy (1-3)

- Shocks on extreme weather episodes have compelling impact on Philippine banking sector performance
 - Microprudential policy integrating climate and environmental risks into on-site examination, off-site monitoring and supervisory rating system crucially important
 - Macroprudential policy inclusion of climate and environmental risks into stress testing exercise (both bank-level and industry) is useful
 - Comprehensive data needs have to be determined for Climate/Environmental Risk Analysis (borrower-level data, loan by industry)
- Underpinning BSP policies and regulations seem useful
 - As shocks from extreme rainfall episodes to bank total assets and profitability taper off and bank equity remains strong
 - BSP temporary relief policy formalized in 2018
 - Corporate Governance and Risk Management Guidelines (credit and operational risks)
- Importantly, a whole-of-government approach is necessary to strengthen green/sustainable finance
- o Joint BSP and Department of Finance set up of Inter-government agency Committee on Sustainable Finance
- o PH banks implementing sustainability principles in ESG even without explicit guidelines and issuing bonds
- o BSP investment in BIS green bonds (international reserves)
- o BSP to issue sustainable finance framework in phases

