

Debt sustainability and fiscal space in a heterogeneous Monetary Union: normal times vs the ZLB

Javier Andrés, Pablo Burriel and Wenyi Shen

Universidad de Valencia, Banco de España and Oklahoma State University

CEMLA (online), 7-08-2020

Motivation

High gov. debt/GDP in EMU members raise concerns about debt sustainability:

- Is debt sustainability different for a EMU member? Normal times vs ZLB
- Are there spillover effects on debt sustainability within EMU?
- Are effects of fiscal consolidation & coordination different within EMU?

2 / 36

Structure of presentation

- Introduction
- Preview of results
- Model
- Fiscal limit
- Long-run fiscal consolidation
- Short-run discretionary fiscal policy
- Conclusions

Literature

- Standard Monetary union DSGEs assessing policy effects do not account for default risks: Gali & Monacelli (2008), Ferrero (2009).
- **Debt sustainability** literature use DSGEs with exogenous risk premia:

 Mendoza and Oviedo (2004), Corsetti et al. (2013).
- Sovereign default literature internalize default cost but assume exogenous output: Eaton & Gersovitz (1981), Arellano (2008), Dovis (2019).
- Default in EMU is more likely the result of accidents, than strategic.

Preview of results

- **Normal times:** Risk channel matters significally when debt is >90%.
 - ▶ Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - ► Endogenous risk premium explains 40% of that reduction.
- ZLB: Risk channel becomes muted
 - lacktriangle Consolidation generates deflation expectations $\Rightarrow \uparrow$ real int. rate
 - Policy coordination favors expansion in EMU.

Model highlights

Two-country New Keynesian model (Benigno & Benigno (2005)), modified for:

- Periphery's High debt is subject to default risk, Core with low debt.
- Endogenous debt sustainability risk: distance to fiscal limit (Bi (2012))

Other characteristics:

- Total home bias in debt & gov spending.
- Distortionary taxes on income.
- Calibration: Periphery (Spain) & Core (Germany).

1) RISKY PERIPHERY'S GOVERNMENT DEBT

• Periphery's government debt (b_{t-1}) is subject to default risk, with haircut δ (= 0.3 annually, Bi (2012)) and risky yield R_t

$$\delta_t = \left\{ egin{array}{ll} 0 & & ext{if} & b_{t-1} < \mathcal{B}(\mathcal{S}_t) \ \delta & & ext{if} & b_{t-1} \geq \mathcal{B}(\mathcal{S}_t) \end{array}
ight.$$

where $\mathcal{B}(\mathcal{S}_t)$ is a random draw from fiscal limit distribution

1) RISKY PERIPHERY'S GOVERNMENT DEBT

• Periphery's government debt (b_{t-1}) is subject to default risk, with haircut δ (= 0.3 annually, Bi (2012)) and risky yield R_t

$$\delta_t = \left\{ egin{array}{ll} 0 & & ext{if} & b_{t-1} < \mathcal{B}(\mathcal{S}_t) \ \delta & & ext{if} & b_{t-1} \geq \mathcal{B}(\mathcal{S}_t) \end{array}
ight.$$

where $\mathcal{B}(\mathcal{S}_t)$ is a random draw from fiscal limit distribution

• Periphery household's Euler eq includes risky yield & expected haircut:

$$\lambda_t = \beta E_t \frac{R_t (1 - \delta_{t+1}) \lambda_{t+1}}{\pi_{t+1}}$$

1) RISKY PERIPHERY'S GOVERNMENT DEBT

• Periphery's government debt (b_{t-1}) is subject to default risk, with haircut δ (= 0.3 annually, Bi (2012)) and risky yield R_t

$$\delta_t = \left\{ egin{array}{ll} 0 & & ext{if} & b_{t-1} < \mathcal{B}(\mathcal{S}_t) \ \delta & & ext{if} & b_{t-1} \geq \mathcal{B}(\mathcal{S}_t) \end{array}
ight.$$

where $\mathcal{B}(\mathcal{S}_t)$ is a random draw from fiscal limit distribution

• Periphery household's Euler eq includes risky yield & expected haircut:

$$\lambda_t = \beta E_t \frac{R_t (1 - \delta_{t+1}) \lambda_{t+1}}{\pi_{t+1}}$$

ullet Core gov debt is NOT risky: $\delta_t^*=0$, $R_t^*=R_t^{ECB}$

2) PERIPHERY'S DEBT SUSTAINABILITY RISK = FISCAL LIMIT

Debt sustainability defined as distance to stochastic Fiscal Limit $(\mathcal{B}(\mathcal{S}_t))$

- Fiscal limit is max debt that can be supported without default.
- Iterate on the gov. budget constraint, assuming no default & tax rate $= \tau^{\max} = 0.435$ (Spain's marginal rate)

$$\mathcal{B}(\mathcal{S}_t) = \beta_t^p \pi(\mathcal{S}_t) E_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(\mathcal{S}_{t+j})}{\lambda(\mathcal{S}_t)} \frac{\tau^{\max} y(\mathcal{S}_{t+j}) - g_{t+j}}{tot(\mathcal{S}_{t+j})^{1-\eta}}$$

where state of the economy $\mathcal{S}_t = \{g_t, g_t^*, tot_{t-1}\}$

2) PERIPHERY'S DEBT SUSTAINABILITY RISK = FISCAL LIMIT

$$\mathcal{B}(\mathcal{S}_t) = \beta_t^p \pi(\mathcal{S}_t) E_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(\mathcal{S}_{t+j})}{\lambda(\mathcal{S}_t)} \frac{\tau^{\max} y(\mathcal{S}_{t+j}) - g_{t+j}}{tot(\mathcal{S}_{t+j})^{1-\eta}}$$

- Endogenous: depends on state of economy $(S_t = \{g_t, g_t^*, tot_{t-1}\})$.
- Captures private sector's perception: HH's discount factor.
- $\beta_t^p = \underline{\text{stochastic political risk}} \rightarrow \text{brings risk premium closer to evidence}$ (in 2018 Spain had debt/y=97% & spread \approx 100bp).
- FL distribution simulated using Markov Chain Monte Carlo method.

Periphery's Fiscal Limit: DISTRIBUTION COMPUTED USING B(St)

Cumulative density function (cdf)

- FL approx symmetric with mean=125%, sd=24
- \bullet Prob of default = 0 for B/Y < 80% & =1 for B/Y > 200%
- Between 80-180%: $\uparrow B/Y \rightarrow \uparrow default Prob$

Periphery's FL MP or ZLB.

10% CHANGE IN g OR g*

NORMAL MP: \Uparrow deficit, Y, $\pi \to \Downarrow$ FL (shift UP/LEFT) MP channel weak: small $\Uparrow Y^{EA}$, $\pi^{EA} \to \text{small} \Uparrow R^{ECB} \to \Downarrow$ FL \Rightarrow Both \Downarrow FL (shift UP/LEFT) $\to \Uparrow$ default prob (3% B/Y=125%)

ZLB: NO MP channel \Rightarrow SMALLER effect of Δg , g^* on FL

Fiscal policy exercises.

- Peripherys' long-run consolidation from B/Y=100 to 60%
- $oldsymbol{0}$ Discretionary short-run fiscal policy (transitory Δg , g^*)
 - Under two regimes for Monetary Policy:
 - Normal times
 - Zero lower bound

Policy scenario 1:

Peripherys' long-run consolidation from B/Y=100 to 60%

What we do: set Periphery's debt at 100% & let fiscal/monetary rules bring economy back to 60%

Periphery's long- run Consolidation:

B/Y FROM 100 TO 60%

- High debt requires significant \uparrow tax, $\Downarrow B/Y$ slowly, with high risk premium
- Long and costly process (\Downarrow Y, C & L), spillover to Core (\Downarrow Y*).
- With NO default lower cost of financing. → smaller Y loss

BANCODEESPAÑA

Periphery's Consolidation: Frontloaded?

- Frontloaded ↓ risk premium & long-run cost.
- Initial greater $\Downarrow Y$ due to flex wages: stronger $\uparrow tax \rightarrow \uparrow W \rightarrow \uparrow R^{ECB}$
- GDP loss from frontloading is lower when FL is Endogenous.

Policy scenario 2:

Discretionary short-run fiscal policy (transitory Δg , g^*)

Monetary Policy in normal times regime

IRFs show marginal effects with respect to long-run consolidation.

Discretionary fiscal policy: 1% rise in g

- With high debt, $\Uparrow g \rightarrow \Downarrow FL$, $\Uparrow risk premium \rightarrow \Uparrow R/\pi$
- Initial rise in Y, but falls after 10q
- ullet MP channel weak: $\uparrow \pi^{EA} o \text{small} \uparrow R^{ECB} o \psi \text{FL}$

Discretionary fiscal policy: 1% rise in g

- Risk premium channel becomes relevant for debt>90%
- Below 90% periphery is closer to low-debt Core

Discretionary fiscal policy: 1% rise in g FFFECT OF ENDOGENEIZING THE FISCAL LIMIT

- When FL is Exogenous RP does not jump

 ↑, rises only as ↑debt
- When debt is not risky, RP is constant, Y doesn't fall.

Policy scenario 2:

Discretionary short-run fiscal policy (transitory Δg , g^*)

Monetary Policy in Zero Lower Bound regime

ZLB, Discretionary FP: 1% rise in g

Under ZLB the RP channel is muted:

- $\uparrow g \rightarrow \Downarrow FL \rightarrow \uparrow RP \rightarrow initially \uparrow Y$, inf
- $\bullet \ \mathsf{ZLB} \to \mathsf{constant} \ \mathsf{R}, \ \!\!\! \Uparrow \mathsf{inf} \to \ \!\!\! \Downarrow \ \!\!\! \frac{\mathit{R}}{\mathit{P}} \to \ \!\!\! \Uparrow \mathsf{FL} \to \ \!\!\! \Downarrow \ \mathsf{RP}$

 \Longrightarrow <u>net effect</u> \to constant RP \to multiplier pprox No default case

BANCO DE ESPAÑA

ZLB: Fiscal coordination

JOINT EXPANSION EMU EXPANSION IS BEST POLICY

At ZLB \rightarrow NO MP channel \rightarrow RP constant \rightarrow best is $\uparrow g^*$, g.

Discretionary FP: Multipliers

Multiplier PV(DY)/PV(DG)	Periphery		Spillover to Core			Euro area			
models	0	1 yr	10 yr	0	1 yr	10 yr	0	1 yr	10 yr
No default	0.71	0.66	0.24	-0.18	-0.17	-0.25	0.14	0.13	-0.08
Exogenous FL	0.71	0.66	-0.24	-0.18	-0.18	-0.37	0.14	0.12	-0.32
Endogenous FL	0.71	0.65	-0.50	-0.18	-0.18	-0.42	0.14	0.12	-0.45
Endogenous FL, ZLB	0.82	0.77	0.56	-0.09	-0.08	-0.09	0.23	0.22	0.17

- Risk premium reduces multiplier by 76bp, 29bp due to endo FL
- Spillover to EMU reduces multiplier by 35bp, 13bp due to endo FL.
- ullet ZLB kills RP channel o multiplier pprox No default case

Conclusions:

- **Normal times:** Risk channel matters significally when debt is >90%.
 - ▶ Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - ► Endogenous risk premium explains 40% of that reduction.
 - ZLB: Risk channel becomes muted
 - ▶ Consolidation generates deflation expectations $\Rightarrow \uparrow$ real int. rate
 - Policy coordination favors expansion in EMU.

Further work

- Calibrate impact of Covid-crisis on Fiscal limit
- Effect of productive government spending
- Effect of structural reforms.

Further work: Impact of Covid on FL

According to pre-crisis FL (movement along the curve). The increase in public debt (ES: 95%->120%) augments prob of default by 30bp But the increase in gov spending (by 4% of GDP) also shifts FL to the LHS. Increasing prob of default for all debt levels.

CEMLA (online), 7-08-2020

Further work: Impact of Covid on FL

An increase of g by 4% of GDP increases risk premium by 100bp under a Taylor rule, but leaves it unchanged under the ZLB

Further work: Gov Productive spending

Impact of change in prod

- If part of G is productive, y = Af(G)L, an increase in G augments productivity, increasing y and FL.
- EU plans to finance national governments investments may help high debt countries.

Further work: Structural reforms

Impact of change in prod

Structural reforms help fiscal sustainability in 2 ways:

- Increase productivity A in y = Af(G)L, increasing y and FL.
- fiscal reforms may push up the max tax rate and increase ${\sf FL}$

$$\mathcal{B}(\mathcal{S}_t) = \beta_t^p \pi(\mathcal{S}_t) E_t \sum_{j=0}^{\infty} \beta^j \frac{\lambda(\mathcal{S}_{t+j})}{\lambda(\mathcal{S}_t)} \frac{\tau^{\max} y(\mathcal{S}_{t+j}) - g_{t+j}}{tot(\mathcal{S}_{t+j})^{1-\eta}}$$

Conclusions:

- **Normal times:** Risk channel matters significally when debt is >90%.
 - ▶ Makes long run consolidation to 60% costly, with spillovers to EMU.
 - Reduces significantly multiplier of discretionary fiscal policy.
 - ► Endogenous risk premium explains 40% of that reduction.
 - ZLB: Risk channel becomes muted
 - ▶ Consolidation generates deflation expectations $\Rightarrow \uparrow$ real int. rate
 - Policy coordination favors expansion in EMU.

THANK YOU FOR YOUR ATTENTION

Calibration:

Periphery = Spain, Core = Germany

parameters	values			
β	0.99	the discount factor		
θ	11	elasticity of substitution		
ψ	116.5	Rotemberg adjustment parameter		
α_{π}	2.5	Taylor rule parameter to inflation		
γ_b	0.3	tax response parameter to changes in debt		
b/y	0.6	steady state debt to output ratio (home)		
b^*/b^*	0.6	steady state debt to output ratio (foreign)		
g/y	0.183	steady state gov spending to output ratio (home)		
g^*/y^*	0.187	steady state gov spending to output ratio (foreign)		
au	0.3005	steady state income tax rate (home)		
$ au^*$	0.3425	steady state income tax rate (foreign)		
a, a^*	1	steady state technology		
$ ho^g, ho^{g*}$	0.9	AR(1) coefficient in government spending rules		
σ_q, σ_{q*}	0.01	standard deviation of government spending shock		
8	0.36	share of home country		
η	0.63	home country bias in home goods		
η^*	0.37	foreign country bias in home goods		
δ	0.07	quarterly haircut on debt if default occurs		

Standard Fiscal/Monetary Policy:

• Fiscal policy rule in each country:

$$\tau_t = \tau + \gamma_b(b_{t-1} - 0.6)$$

Monetary policy

$$R_t^{ECB} = egin{cases} R^{ECB} + lpha_\pi(\pi_{MU,t} - \pi_{MU}) & ext{if } s_t^R = 1 \ 1 & ext{if } s_t^R = 2 \end{cases}$$

MP regime evolves exogenously according to $\begin{pmatrix} p_1 & 1-p_1 \\ 1-p_2 & p_2 \end{pmatrix}$ prob to stay in regime p_1 =.99, p_2 =.65.

Periphery's Fiscal Limit:

10% CHANGE IN PERIPHERY'S GOV. EXPENDITURE g

10% **↑g**:

- \uparrow deficit, Y, $\pi \to \Downarrow$ FL (shift UP/LEFT)
- ullet MP channel weak: small $\uparrow Y^{EA}$, π^{EA} osmall $\uparrow R^{ECB}$ o \Downarrow FL
- \Rightarrow Both \Downarrow FL (shift UP/LEFT) $\rightarrow \uparrow$ default prob (3% B/Y=125%)

Periphery's Fiscal Limit:

10% CHANGE IN CORE'S GOV. EXPENDITURE g*

10% $\uparrow g^* \rightarrow \uparrow deficit^*$, Y^* , $\pi^* \rightarrow spillover$ to Periphery due to:

- MP channel: $\uparrow R^{ECB} \rightarrow \uparrow financing costs of debt \rightarrow \downarrow FL$
- Trade channel: $\uparrow M^* = X \rightarrow \uparrow FL$ (shift DOWN/RIGHT)
- \Rightarrow Net effect \Downarrow FL (shift UP/LEFT) \rightarrow \uparrow default prob (1.5% B/Y=125%) Spillover is 50% of own effect (3% vs 1.5%).

Fiscal coordination in EMU:

JOINT CONSOLIDATION IS BEST POLICY

- $\uparrow g^* \rightarrow$ strong MP channel: $\uparrow R^{ECB} >$ Trade channel
- Thus, best coordination policy is joint consolidation.