Humans Against Virus or Humans Against Humans: A Game Theory Approach to the COVID-19 Pandemic

Santiago Forero, Nicolás Moreno, Juan Ospina

CEMLA-FRBNY-ECB Conference on Economic and Monetary Policy in Advanced and Emerging Market Economies in the times of COVID-19

July 7, 2021

Introduction

- An epidemic is a health shock that:
 - may induce consumers to reduce their activities to protect themselves.
 - prompt governments and policy-makers to implement restrictive measures to slowdown the spread of the virus.
- Both private and government responses produce an **economic-health trade-off**.
- Particularly, an epidemic like the Covid-19 features externalities and private information as key characteristics.
 - People make decisions in an environment of strategic interaction.
 - When they lack information about others' health, the containment of the epidemic is more complicated.
- Modeling such environment appropriately is essential to understand how information losses can affect the extent of externalities.
 - Privacy as a limitation on the collection and use of information.
 - Asymptomatic people.

Motivation

"All public health staff involved in case investigation and contact tracing activities with access to such information should sign a confidentiality statement acknowledging the legal requirements not to disclose COVID-19 information. Efforts to locate and communicate with clients and close contacts must be carried out in a manner that preserves the confidentiality and privacy of all involved. This includes never revealing the name of the client to a close contact unless permission has been given (preferably in writing), and not giving confidential information to third parties (e.g., roommates, neighbors, family members)."

Research Question

What is the cost of privacy and the role of incomplete information in determining the health-economic trade-off in a pandemic?

This Paper

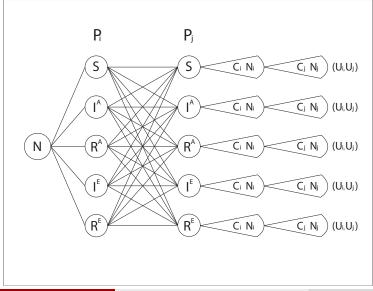
- A framework to analyze and quantify the **role of information** and externalities in an epidemic and their economic consequences.
 - Game to model the strategic interactions of people in an epidemic.
 - Derive a macro-epidemioligical dynamic model in the spirit of Eichenbaum et al. $(2020a)^1$
- With this set up
 - Analyze what happens under different information environments.
 - As a **case study**, apply the framework to the US in the Covid-19 epidemic and evaluate the welfare implications of changing peoples' information sets.
 - Evaluate some policy tools, how they interact with each other, and how they use and provide information to shape the health and economic outcomes during a pandemic.

¹In fact, such model is a particular case of our framework.

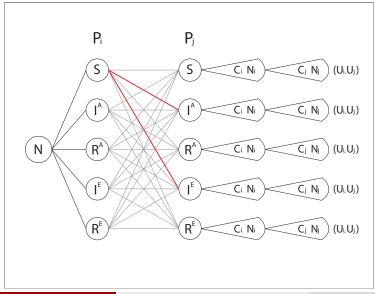
Results

Results

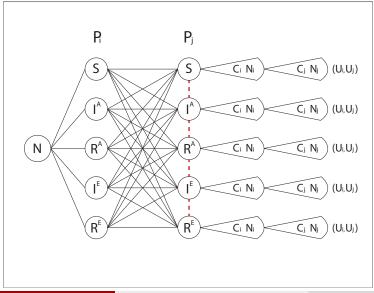
- We find that the greatest welfare losses are not due to the infection externality, but to the loss/lack of private and common information.
 - During the Covid-19 epidemic in the US costs of keeping health information **private** are between USD 5.9 trillion and USD 6.7 trillion.
- The policy tools most widely used to control the epidemic, Containment and Testing, alone yield low welfare gains.
 - Testing is a **double-edged-sword** (Information Assymetries).
 - Containments depend on **available information**: the scarcer information is, the more stringent and generalized they must be.
- The costs of keeping health information private are so large that actively disclosing information about people's health statuses can be a game-changer in the COVID-19 epidemic:
 - People can avoid risky interactions.
 - Challenge: Finding ways of making precise, private information available and usable.

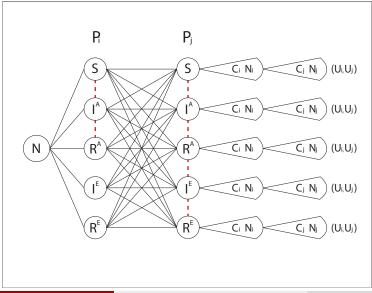

Our Contribution and Related Literature

Our paper makes three contributions.


- First, a framework to analyze and quantify the **role of information** in an epidemic and its economic consequences, which adds to the existing literature found in:
 - Eichenbaum et al. (2020a), Acemoglu et al. (2020), Rowthorn and Toxvaerd (2020), Alvarez et al. (2020), Jones et al. (2020), Farboodi et al. (2020), and Garriga et al. (2020)
- Second, we measure the importance of **actively disclosing** disaggregated information about people's health status, as a powerful policy tool to reduce the economic health trade-off of the COVID-19. This contributes more closely to:
 - Argente et al. (2020), Eichenbaum et al. (2020b) and Berger et al. (2020).
- Third, we **microfound** how information affects economic and policy decisions in an epidemic, which allows for a more natural way of incorporating heterogenity and agents interaction in this macro-epidemic models.

Complete Information


The Game


The Game: Complete Information

The Game: Partial Incomplete Information (PII)

The Game: Total Incomplete Information (TII)

Susceptible and Asymptomatic Player's Decisions in TII

Asymptomatic People

$$\max U_{t}^{A} = q_{t}^{S} U_{t}^{A,S} + q_{t}^{I^{A}} U_{t}^{A,I^{A}} + q_{t}^{R^{A}} U_{t}^{A,R^{A}}$$

$$s.t.(1 + \mu_{t})c_{t}^{A} = w_{t}n_{t}^{A} + \Gamma_{t}$$

$$\wedge \tau_{t}^{I^{E}} = \pi_{1}c_{t}^{A}c_{t}^{I^{E}} + \pi_{2}n_{t}^{A}n_{t}^{I^{E}} + \pi_{3}$$

$$\wedge \tau_{t}^{I^{A}} = \pi_{1}c_{t}^{A}c_{t}^{I^{A}} + \pi_{2}n_{t}^{A}n_{t}^{I^{A}} + \pi_{3}$$

With

$$\begin{array}{lll} U_{t}^{A,I^{A}} & = & u\left(c_{t}^{A},n_{t}^{A}\right) + \beta\left[\left(1-\pi_{r}^{A}\right)U_{t+1}^{A,I^{A}} + \pi_{r}^{A}U_{t+1}^{A,R^{A}}\right] \\ U_{t}^{A,R^{A}} & = & u\left(c_{t}^{A},n_{t}^{A}\right) + \beta U_{t+1}^{A,R^{A}} \\ U_{t}^{A,S} & = & u\left(c_{t}^{A},n_{t}^{A}\right) + \beta\left[\left(1-{p_{t}^{I^{E}}}{\tau_{t}^{I^{E}}} - {p_{t}^{I^{A}}}{\tau_{t}^{I^{A}}}\right)U_{t+1}^{A,S} + \left({p_{t}^{I^{E}}}{\tau_{t}^{I^{E}}} + {p_{t}^{I^{A}}}{\tau_{t}^{I^{A}}}\right)U_{t+1}^{I}\right] \end{array}$$

To deal with the uncertainty about her and others' type, Player i employs Harsanyi priors F and G.

Government

$$\mu_t \left(c_t^A \left(S_t + I_t^A + R_t^A \right) + c_t^{I^E} I_t^E + c_t^{R^E} R_t^E \right) = \Gamma_t (S_t + I_t + R_t)$$

• Equilibrium

$$\left(S_t + I_t^A + R_t^A\right)c_t^A + I_t^E c_t^{I^E} + R_t^E c_t^{R^E} = AN_t$$
$$S_t n_t^A + I_t^A n_t^A + I^E \phi^I n_t^{I^E} + R_t n_t^R = N_t$$

13

Contagion Dynamics

Newly Infected:

$$T_{t} = \underbrace{\int_{0}^{S_{t}} \int_{0}^{I_{t}^{A}} \tau_{t}^{I^{A}} dj di}_{\text{Risky Interactions-Asymptomatic}} + \underbrace{\int_{0}^{S_{t}} \int_{0}^{I_{t}^{E}} \tau_{t}^{I^{E}} dj di}_{\text{Risky Interactions-Symptomatic}}$$
$$= \pi_{1} c_{t}^{A} S_{t} c_{t}^{I} I_{t} + \pi_{2} n_{t}^{A} S_{t} n_{t}^{I} I_{t} + \pi_{3} S_{t} I_{t}$$

Infected Types:

$$I_{t+1}^{A} = I_{t}^{A} + \chi^{A} T_{t} - \pi_{r}^{A} I_{t}^{A}$$
$$I_{t+1}^{E} = I_{t}^{E} + (1 - \chi^{A}) T_{t} - (\pi_{r}^{E} + \pi_{d}) I_{t}^{E}$$

Population Dynamics I

Susceptible People

$$S_{t+1} = S_t - T_t$$

Total Infected People

$$I_{t+1} = I_{t+1}^A + I_{t+1}^E$$

Asymptomatic Recovered People

$$R_{t+1}^A = R_t^A + \pi_r^A I_t^A$$

Symptomatic Recovered People

$$R_{t+1}^E = R_t^E + \pi_r^E I_t^E$$

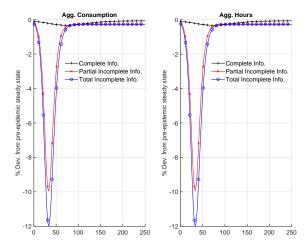
Deaths

$$D_{t+1} = D_t + \pi_d I_t^E$$

Total Population

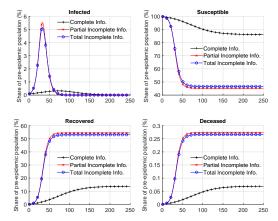
$$P_{t+1} = P_t - \pi_d I_t^E$$

Calibration & Solution

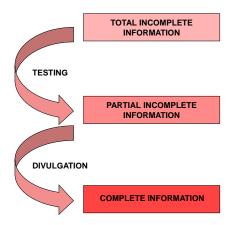

Parameter	Value
A	39.835
eta	$0.96^{\frac{1}{52}}$
heta	0.0013
ϕ^{I}	0.8
π_1	7.8408 <i>e</i> ⁻⁸
π_2	$1.2442e^{-4}$
π_3	0.3902
π_d	0.0032
π_R^A	0.3889
π_R^E	0.3857
χ^{A}	0.3993

 \rightarrow The model is solved using a numerical method, in which time iteration is mixed.

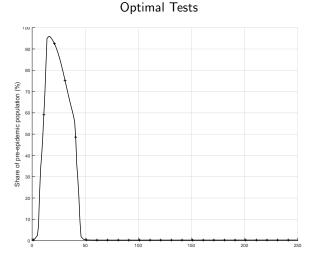
 \rightarrow Simulations have a 250 periods horizon of weekly periodicity.


Welfare Analysis

Economic Aggregates


Welfare Analysis - Health and population variables

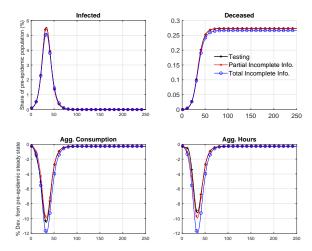
Population Dynamics



Policy Tools - Modified Model

The Policy Tools

Testing

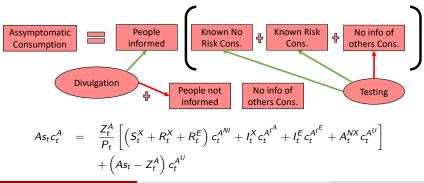


This path is consistent with a marginal cost for testing of \$20 (CDC (2020)).

Tests

Testing

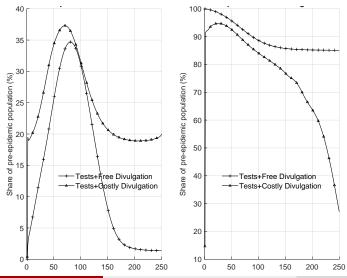
Testing: Economic-Epidemic Dynamics



Active Disclosure (Divulgation)

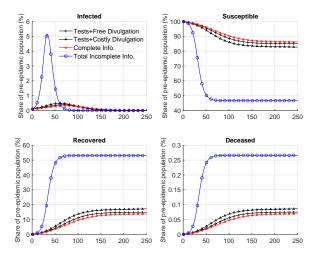
- Divulgation makes information collected through testing publicly known.
- Argente et al. (2020) examined the effects of a policy along these lines in Seoul and found that people indeed modified their commuting patterns according to the information provided.
- You can think of disclosure in two ways:
 - Putting a sign on people's faces
 - Providing better, useful and usable information so that people make better decisions
- We favor the second interpretation, as the first one is a limit case:
 - * For us, divulgation is a policy tool that **influences economic choices** by improving information that allows susceptible agents to better assess contagion risk in any interaction.
 - * In the model we microfound these effects and look for ideal solutions.
 - * In the real world, the more precise information is given and used the closer one gets to the "Putting a sign on people's faces" analogy.

Divulgation in the model

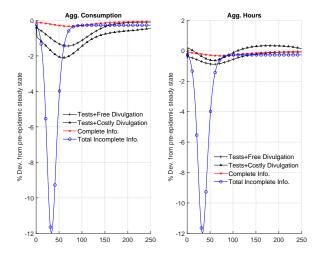

- The information disclosed is aimed at **Susceptibles**, who are split into 2 groups: the tested and the untested (don't know own type).
- The divulgation mechanism consists of giving the available information to a number of people from each group.
- In our model, divulgation is a tool that improves, in the average interaction, the information sets with which players choose their actions:

Santiago Forero, Nicolás Moreno, Juan Ospina Humans Against Virus or Humans Against Humans:

Optimal testing and divulgation


Optimal Information Policy

Santiago Forero, Nicolás Moreno, Juan Ospina Humans Against Virus or Humans Against Humans:


Divulgation improves health outcomes

Optimal Information Policy-Epidemic Dynamics

Divulgation and economic outcomes

Optimal Information Policy-Economic Outcomes

Welfare, economic and epidemiological results

	CI	PII	TII	Tests	Tests FD	Tests CD	Optimal Mix FD	Optimal Mix CD
Relative loss of Aggregate Welfare	0	-0.2005	-0.2314	-0.2079	-0.0334	-0.0705	-0.0287	-0.0655
Max Fall in Aggregate Consumption %	-0.33	-9.94	-11.96	-10.51	-1.44	-2.09	-1.31	-1.99
Cumulative Fall in Aggregate Consumption %	-0.17	-1.24	-1.54	-1.34	-0.64	-1.12	-0.62	-1.08
Max Fall in Aggregate Hours %	-0.33	-9.94	-11.96	-9.24	-0.87	-0.63	-0.72	-0.50
Peak Infection %	0.32	5.53	5.15	5.54	0.39	0.49	0.36	0.47
Final Deaths %	0.06	0.27	0.26	0.27	0.07	0.08	0.07	0.08
Final Recoveries%	13.74	54.49	53.05	54.43	14.92	17.19	14.39	16.85
Peak of General Conatinment%	-	-	-	-	-	-	0	0
Peak of Exhibit Containment %	-	-	-	-	-	-	78.15	63.51
Peak of Asymptomatic Containment %	-	-	-	-	-	-	66.72	56.88
Average % of Population Tested per Week	-	-	-	11.03	13.93	24.88	16.78	25.45
Max % of Population Tested per Week	-	-	-	95.96	34.68	42.26	35.18	38.00
Average % of Population Informed per Week	-	-	-	-	89.49	76.02	89.92	74.97
Max % of Population Informed per Week	-	-	-	-	99.93	94.76	99.93	94.00

Santiago Forero, Nicolás Moreno, Juan Ospina Humans Against Virus or Humans Against Humans:

Conclusions

- We developed an analytical framework that uses game theory to:
 - **1** Understand theoretically how information shapes epidemic dynamics
 - Quantify the importance of information and externalities on health and economic outcomes
 - Think about different policies and, given one, how much of the other you should do optimally.
- Applied to the COVID-19 epidemic in the US: loss of information generates sizable and most of the losses.
- **Containment** and **Testing** alone are insufficient to significantly reduce the economy-health tradeoff.
- The game changer is disclosure as a policy: Privacy is important, but its costs are much too great in the presence of externalities and this paper is useful for the privacy debate.
- At least 2 challenges:
 - **1** Theory and framework: measure costs of disclosure
 - 2 Practice: how to get info to people in a cheap, usable way

References I

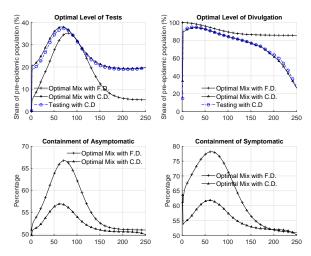
- Acemoglu, D., Chernozhukov, V., Werning, I., and Whinston, M. D. (2020). Optimal targeted lockdowns in a multi-group sir model. *NBER Working Paper*, 27102.
- Alvarez, F., Argente, D., and Lippi, F. (2020). A simple planning problem for covid-19 lockdown. *National Bureau of Economic Research*.
- Argente, D. O., Hsieh, C.-T., and Lee, M. (2020). The cost of privacy: Welfare effect of the disclosure of covid-19 cases. *National Bureau of Economic Research*.
- Atkeson, A. (2020). What will be the economic impact of covid-19 in the us? rough estimates of disease scenarios. *National Bureau of Economic Research*.
- Baker, S. R., Bloom, N., Davis, S. J., and Terry, S. J. (2020). Covid-induced economic uncertainty. National Bureau of Economic Research, 26983.
- Berger, D. W., Herkenhoff, K. F., and Mongey, S. (2020). An seir infectious disease model with testing and conditional quarantine. *National Bureau of Economic Research*, 26901.
- Brotherhood, L., Kircher, P., Santos, C., and Tertilt, M. (2020). An economic model of the covid-19 epidemic: The importance of testing and age-specific policies. *Institute of Labor Economics*.

References II

- CDC (2020). Covid-19 pandemic planning scenarios. *Center for Disease Control*. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.htmltable-1.
- Deaton, A. (2021). Covid-19 and global income inequality. *National Bureau of Economic Research*.
- Deb, P., Furceri, D., Ostry, J., and Tawk, N. (2020). The effect of containment measures on the covid-19 pandemic. *International Monetary Fund*.
- Eichenbaum, M. S., Rebelo, S., and Trabandt, M. (2020a). The macroeconomics of epidemics. *National Bureau of Economic Research*, 26882.
- Eichenbaum, M. S., Rebelo, S., and Trabandt, M. (2020b). The macroeconomics of testing and quarantining. *National Bureau of Economic Research*, 27104.
- Farboodi, M., Jarosch, G., and Shimer, R. (2020). Internal and external effects of social distancing in a pandemic. *National Bureau of Economic Research*.
- Garriga, C., Manuelli, R., and Sanghi, S. (2020). Optimal management of an epidemic: An application to covid-19. a progress report. *National Bureau of Economic Research*.
- Jones, C., Philippon, T., and Venkateswaran, V. (2020). Optimal mitigation policies in a pandemic: Social distancing and working from home. *National Bureau of Economic Research*.

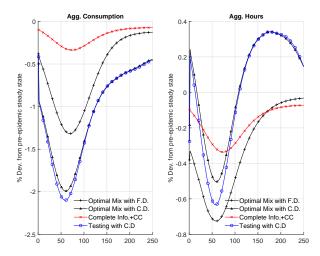
References III

- Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. *Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character*, 115.
- Rowthorn, R. and Toxvaerd, F. (2020). The optimal control of infectious diseases via prevention and treatment. *Cambridge-INET Working Paper*.
- Stock, J. H. (2020). Data gaps and the policy response to the novel coronavirus. *National Bureau of Economic Research*, 26902.


Welfare, economic and epidemiological results

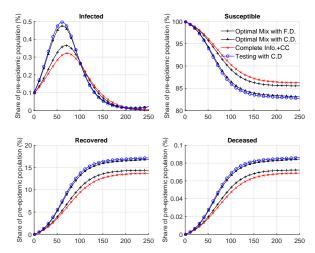
	CI	PII	ТШ	CI GC	CI CC	PII GC	PII CC	TII GC
Relative loss of Aggregate Welfare	0	-0.2005	-0.2314	0	0.0003	-0.1741	-0.164	-0.1955
Max Fall in Aggregate Consumption %	-0.33	-9.94	-11.96	-0.33	-0.33	-28.53	-7.02	-30.78
Cumulative Fall in Aggregate Consumption %	-0.17	-1.24	-1.54	-0.17	-0.17	-4.97	-1.14	-5.88
Max Fall in Aggregate Hours %	-0.33	-9.94	-11.96	-0.33	-0.33	-28.53	-7.02	-30.78
Peak Infection %	0.32	5.53	5.15	0.32	0.32	3.37	3.58	3.11
Final Deaths %	0.06	0.27	0.26	0.06	0.06	0.22	0.23	0.21
Final Recoveries %	13.74	54.49	53.05	13.74	13.69	43.89	46.58	42.12
Peak of General Containment %	-	-	-	0	-	73.05	-	82.34
Peak of Exhibit Containment %	-	-	-	-	7.89	-	199.98	-
Peak of Asymptomatic Containment %	-	-	-	-	6.28	-	194.58	-

Optimal Mix


Optimal Mix

The Optimal Mix

Optimal Mix


The Optimal Mix

Optimal Mix

Optimal Mix

