Rational Sentiments and Financial Frictions

Paymon Khorrami (Imperial College) Fernando Mendo (Central Bank of Chile)

XXVI Meeting of Central Bank Researchers Network CEMLA
November 9-11, 2021

Models with financial frictions: shortcomings

Large macro literature featuring financial frictions

Bernanke and Gertler [1989]; Shleifer and Vishny [1992]; Kiyotaki and Moore [1997]; Bernanke et al. [1999]; Gertler and Kiyotaki [2010]; Gertler and Karadi [2011]; Bianchi [2011]; Mendoza [2010]; Brunnermeier and Sannikov [2014]; Brunnermeier and Sannikov [2015]; Phelan [2016]; Drechsler et al. [2018]; Moreira and Savov [2017]; Klimenko et al. [2017]; Bianchi and Mendoza [2018]; He and Krishnamurthy [2019].

Problem 1: reproducing the severity and suddenness of financial crises

⇒ Add systemic bank runs

Gertler and Kiyotaki [2015]; Gertler et al. [2020]; Mendo [2020]

Problem 2: generate booms that are prone to bust

⇒ Add non-rational beliefs

Krishnamurthy and Li [2020]; Maxted [2020]

This paper:

- this class of economies has unstudied equilibria (sunspot equilibria)
- sunspots help alleviate issues with these models, e.g., Problems 1&2

Model

A very common macro-finance setting

- All agents have log utility over consumption.
- Production is linear in capital, with *experts* more productive than households $(a_e > a_h)$.
- ullet Capital is freely traded at price q_t and grows evolves as

$$\frac{dK_t}{K_t} = gdt + \underbrace{\sigma dZ_t^{(1)}}_{\text{fundamental shock}}$$

- Financial friction: producers cannot issue equity, but can borrow/lend freely in riskless bonds at rate r_t .
 - no credit constraints
 - all results generalize to partial but limited equity issuance
- Information structure: extrinsic uncertainty $dZ^{(2)}$

Capital price and return

Capital price q

$$\frac{dq_t}{q_t} = \mu_{q,t} dt + \underbrace{\sigma_{q,t}^{(1)} dZ_t^{(1)}}_{\text{amplification of fundamentals}} + \underbrace{\sigma_{q,t}^{(2)} dZ_t^{(2)}}_{\text{sunspot fluctuations}}$$

Volatility of capital returns $|\sigma_R|^2$

$$\sigma_{R,t} := \sigma(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}) + \sigma_{q,t}$$

Equilibrium

Price-output relation:

$$\rho q = a_e \kappa + a_h (1-\kappa) \quad \mbox{(from goods market)}$$
 where κ is experts' capital share.

• Risk-balance condition:

$$\frac{a_e-a_h}{q}=\frac{\kappa-\eta}{\eta(1-\eta)}|\sigma_R|^2\quad \text{(optimal portfolios when }\kappa<1\text{)}$$

where η is experts' wealth share.

Equilibrium

Price-output relation:

$$\rho q = a_e \kappa + a_h (1-\kappa) \quad \text{(from goods market)}$$
 where κ is experts' capital share.

• Risk-balance condition:

$$\frac{a_e-a_h}{q}=\frac{\kappa-\eta}{\eta(1-\eta)}|\sigma_R|^2\quad \text{(optimal portfolios when }\kappa<1\text{)}$$
 where η is experts' wealth share.

• Risk premium:

$$\mu_q - r + \sigma \sigma_q \cdot \left(\frac{1}{0}\right) = -(\rho + g) + \left(\frac{\kappa^2}{n} + \frac{(1 - \kappa)^2}{1 - n}\right) |\sigma_R|^2$$

• Wealth share dynamics: $d\eta_t = \mu_{\eta,t} dt + \sigma_{\eta,t} \cdot dZ_t$ given η_0

$$\mu_{\eta} = \mu_{\eta}(\eta, \kappa, |\sigma_R|^2), \quad \sigma_{\eta} = (\kappa - \eta)\sigma_R$$

Equilibrium

Price-output relation:

$$\rho q = a_e \kappa + a_h (1-\kappa) \quad \text{(from goods market)}$$
 where κ is experts' capital share.

• Risk-balance condition:

$$\frac{a_e-a_h}{q}=\frac{\kappa-\eta}{\eta(1-\eta)}|\sigma_R|^2\quad \text{(optimal portfolios when }\kappa<1\text{)}$$
 where η is experts' wealth share.

• Risk premium:

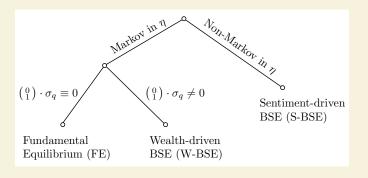
$$\mu_q - r + \sigma \sigma_q \cdot \left(\frac{1}{0}\right) = -(\rho + g) + \left(\frac{\kappa^2}{n} + \frac{(1 - \kappa)^2}{1 - n}\right) |\sigma_R|^2$$

ullet Wealth share dynamics: $d\eta_t = \mu_{\eta,t} dt + \sigma_{\eta,t} \cdot dZ_t$ given η_0

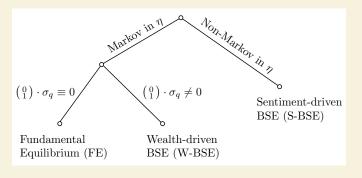
$$\mu_{\eta} = \mu_{\eta}(\eta, \kappa, |\sigma_R|^2), \quad \sigma_{\eta} = (\kappa - \eta)\sigma_R$$

Equilibrium: Given $\eta_0 \in (0,1)$, an *equilibrium* consists of processes $(\eta_t, q_t, \kappa_t, r_t)_{t \geq 0}$ such that equations above hold for all $t \geq 0$.

Types of equilibria



Types of equilibria

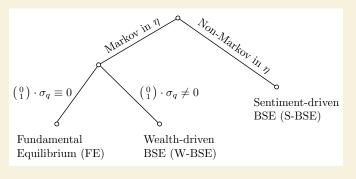


Usual solution path: imposing a Markov solution in η (i.e., $q=q(\eta)$)

ullet Extra conditions: dq consistent with $d\eta$ (Ito's Lemma)

$$q\sigma_q = q'\sigma_\eta, \quad q\mu_q = q'\mu_\eta + 0.5q''|\sigma_\eta|^2$$

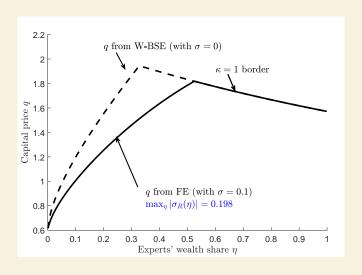
Types of equilibria



Usual solution path: imposing a Markov solution in η (i.e., $q=q(\eta)$)

- FE: widely studied (e.g., Brunnermeier and Sannikov [2016])
- W-BSE: inconsistent w/ fundamental shocks ($\sigma > 0$)
 - w/o fundamental shocks ($\sigma=0$), there exist a W-BSE but it strongly resembles a FE with small σ .
- \Rightarrow No interesting new dynamics if equilibrium is Markov in η !

Fundamental equilibrium and W-BSE



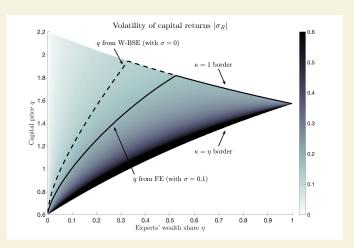
Beyond wealth: sentiment-driven BSE

(S-BSE)

Beyond wealth: sentiment-driven BSE (S-BSE)

Theorem (Existence of S-BSEs):

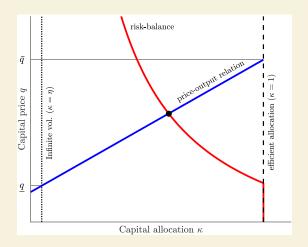
Under mild parametric restrictions, there exists an S-BSE in which $(\eta_t,q_t)_{t\geq 0}$ remains in $\mathcal{D}:=\{(\eta,q): 0<\eta<1 \text{ and } \eta a_e+(1-\eta)a_h< q\bar{\rho}(\eta)\leq a_e\}$ almost-surely and possesses a non-degenerate stationary distribution.



Static indeterminacy mechanism

Price-output: $\rho q = a_e \kappa + a_h (1 - \kappa)$

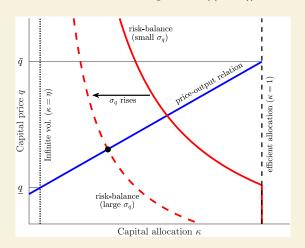
Risk-balance: $\frac{a_e - a_h}{q} = \frac{\kappa - \eta}{\eta (1 - \eta)} |\sigma_R|^2$



Static indeterminacy mechanism

Price-output: $\rho q = a_e \kappa + a_h (1 - \kappa)$

Risk-balance: $\frac{a_e - a_h}{q} = \frac{\kappa - \eta}{\eta (1 - \eta)} |\sigma_R|^2$



Dynamic stability mechanism

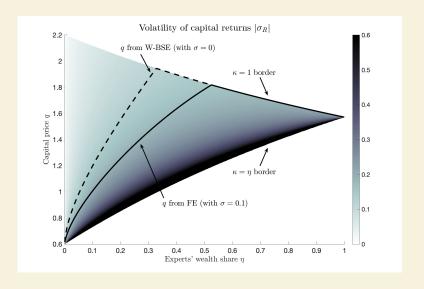
- Static indeterminacy is compatible with equilibrium only if it does not lead to violations of equilibrium conditions in the future (i.e., $(\eta_t, q_t)_{t \geq 0}$ remain in triangle \mathcal{D}).
- ullet Only the risk premium is pinned down, not μ_q and r separately,

$$\mu_q - r + \sigma \sigma_q \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -(\rho + g) + \left(\frac{\kappa^2}{\eta} + \frac{(1 - \kappa)^2}{1 - \eta}\right) |\sigma_R|^2$$

Hence, we use the degree of freedom to choose μ_q to ensure stochastic stability.

- Choice of μ_q is straightforward. For example, $\mu_q \to \infty$ if q falls too low, and $\mu_q \to -\infty$ if q rises too high.
- Stability requirements translate to boundary conditions.

Sentiment-driven BSE (S-BSE)



Two indeterminacies in S-BSEs

Corollary (Decoupling)

The economy can be arbitrarily coupled or decoupled from fundamentals in the following sense. Let $\gamma(\eta,q)\in[0,1]$ be any C^1 function. An equilibrium exists such that when $\kappa<1$, a fraction $\gamma(\eta,q)$ of return variance $|\sigma_R|^2$ is due to the fundamental shock.

Corollary (Drift indeterminacy)

The economy can feature any degree of persistence or transience in the following sense. Let $m(\eta,q)$ be any C^1 function. An equilibrium exists with $\mathbb{P}[\mu_{q,t}=m(\eta_t,q_t)\mid\kappa_t<1]$ arbitrarily close to one. Furthermore, the inefficiency probability $\mathbb{P}[\kappa_t<1]$ can take any value between zero and one.

Resolving puzzles with sentiment

Explicit construction with sentiment variable

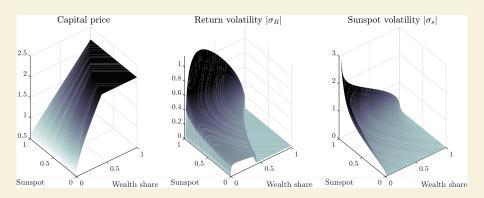
 \bullet Let s_t be a pure sunspot that is irrelevant to economic fundamentals and loads on only the second shock

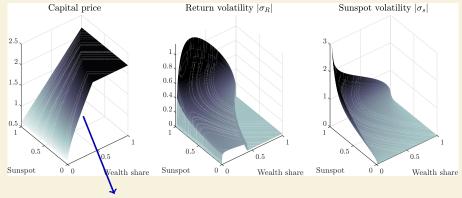
$$ds_t = \mu_{s,t}dt + \sigma_{s,t}({0 \choose 1} \cdot dZ_t, \quad s_t \in \mathcal{S}$$

• Auxiliary sunspot state variable $x_t \in \mathcal{X}$ that may only affect the drift $\mu_{s,t}$ (flexibility due to indeterminacy corollary).

Definition A *Markov S-BSE* in states $(\eta, s, x) \in (0, 1) \times \mathcal{S} \times \mathcal{X}$ consists of functions $(q, \kappa, r, \sigma_{\eta}, \mu_{\eta}, \sigma_{s}) : (0, 1) \times \mathcal{S} \mapsto \mathbb{R}$, and $\mu_{s} : (0, 1) \times \mathcal{S} \times \mathcal{X} \mapsto \mathbb{R}$ such that the process $(\eta_{t}, q(\eta_{t}, s_{t}), \kappa(\eta_{t}, s_{t}), r(\eta_{t}, s_{t}))_{t \geq 0}$ is a S-BSE.

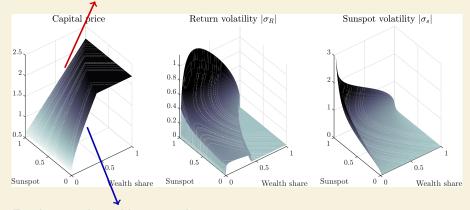
- We allow (μ_s, σ_s) to depend on η .
 - Why? It's sensible to use asset prices directly in forecasting.
 - Novel construction: fix $q(\eta,s)$, recover the σ_s process that justifies it, then set μ_s to ensure stability.





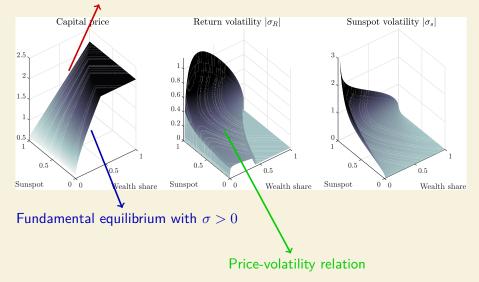
Fundamental equilibrium with $\sigma>0$

Terrible equilibrium where $\kappa \approx \eta$

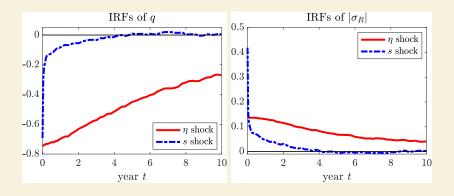


Fundamental equilibrium with $\sigma>0$

Terrible equilibrium where $\kappa \approx \eta$



Fundamental vs non-fundamental busts



- The IRFs labeled " η shock" are responses to a decrease in η from $\eta_{0-}=0.5$ to $\eta_0=0.2$, holding s_0 fixed at 0.1.
- The IRFs labeled "s shock" are responses to an increase in s from $s_{0-}=0.1$ to $s_0=0.9$, holding η_0 fixed at 0.5.
- ullet These shock sizes are chosen such that the initial response of q are approximately equal.

Non-fundamental crises and large amplification

Proposition (Arbitrary volatility)

Given a target variance $\Sigma^*>0$ and under mild parameter restrictions, there exists a Markov S-BSE with stationary average return variance exceeding the target, i.e., $\mathbb{E}[|\sigma_R|^2]>\Sigma^*$.

Proposition (Volatility decoupling)

In the Markov S-BSEs constructed both the fraction of return volatility due to sentiments $|\binom{0}{1}\cdot\sigma_R|/|\sigma_R|$ and total return volatility $|\sigma_R|$ increase with s.

Booms predict crises

 Following some models of extrapolative beliefs [Barberis et al., 2015, Maxted, 2020], define an exponentially-declining weighted average of sentiment shocks:

$$x_t := x_0 + \sigma_x \int_0^t e^{-\beta_x (t-u)} dZ_u^{(2)}.$$

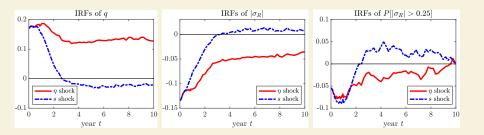
Assume the drift of s depends on x via

$$\mu_{s,t} = b_x x_t + \hat{\mu}_s(s_t)$$
 with $b_x \le 0$.

the term $\hat{\mu}_s$ is designed to prevent non-stationarity in s_t .

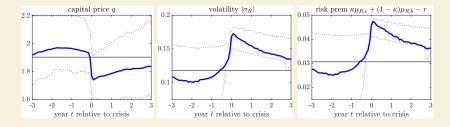
• After a series of good sentiment shocks $(dZ_t^{(2)} < 0)$, s_t and x_t will be low (boom times), but this buoys $\mu_{s,t}$ and shifts conditional distributions of s_{t+h} to the right (future busts).

Booms predict crises



- The IRFs labeled " η shock" are responses to an increase in η from $\eta_{0-}=0.5$ to $\eta_0=0.7$, holding s_0 fixed at 0.4.
- The IRFs labeled "s shock" are responses to a decrease in s from $s_{0-}=0.4$ to $s_0=0.1$, holding η_0 fixed at 0.5.
- These shock sizes are chosen such that the initial response of q are approximately equal.

Behavior around financial crises



- Crises are defined as the bottom 3rd percentile of month-to-month log output declines.
- Conditions are improving up to 2 years before the crisis, with risk premia below average and declining.
- The crisis emerges suddenly and features spikes in all variables.
- These dynamics cannot be produced in the non-sunspot equilibria of the model.

Sentiment-based jumps

 Consider a broader class of solutions for the baseline model where capital price can also respond to an extrinsic jump shock, i.e.,

$$\frac{dq_t}{q_{t-}} = \mu_{q,t-}dt + \sigma_{q,t-} \cdot dZ_t - \ell_{q,t-}dJ_t,$$

where J is a Poisson process with intensity λ .

The risk-balance condition

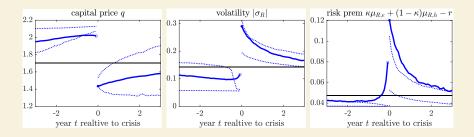
$$\frac{a_e - a_h}{q} = \frac{\kappa - \eta}{\eta (1 - \eta)} \left(|\sigma_R|^2 + \frac{\lambda \ell_q^2}{\left(1 - \frac{\kappa}{\eta} \ell_q\right) \left(1 - \frac{1 - \kappa}{1 - \eta} \ell_q\right)} \right)$$

disciplines overall risk but not the split between Brownian and Poisson shocks. Additional degree of freedom.

• Chosen jump sizes for exercise

$$\ell_q = \begin{cases} 0.95 \ell_q^{\rm max}, & \text{if } \kappa > 0.9 \text{ and } 0.9 \ell_q^{\rm max} > 0.2 \\ 0, & \text{otherwise}, \end{cases}$$

Sentiment-based jumps: behavior around crises



- Crises: bottom 3rd percentile of month-to-month log output declines.
- Crises tend to arrive after a sequence of positive fundamental shocks.
- In the years before the crisis, asset prices are high, and both volatility and risk premia are below their usual level.
- Crises arrive suddenly—with only a few months "warning" in terms of rising volatility and risk premia—and generate large movements in observables, because simulated crises often coincide with realizations of a jump.

Conclusion

- Macroeconomic models with financial frictions inherently permit sunspot volatility. These models are extremely common, so this phenomenon cannot be ignored.
- Fully-rational notion of "sentiments" can be a powerful input into macro-finance dynamics. Unbounded amplification, sharp volatility spikes, and sentiment-driven boom-bust cycles are among the possibilities.
- Our results suggest a modicum of caution. Numerical techniques used to solve DSGE models with financial frictions implicitly select an equilibrium, without any explicit justification. A deeper analysis of refinements still remains to be done.

Policy?

- Deposit insurance less effective, because run-like behavior can be an asset-side phenomenon.
- Capital requirements, bailouts, etc, are likely less effective when volatility is decoupled from balance sheets.