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Abstract

We forecast recessions in Canada using an autoregressive (AR) probit model. The

presence of the lagged latent variable in this model results in an intractable likelihood with

a high dimensional integral. We employ composite likelihood methods, which facilitates

the estimation of this complex model, and provide their asymptotic results. We perform

a variable selection procedure on a large variety of Canadian and foreign macro-financial

variables by using the area under the receiver operating characteristic curve (AUROC) as

the performance criterion. Our findings suggest that the AR model improves meaningfully

the forecasting performance of Canadian recessions – relative to its static counterpart

and a variety of probit models proposed in the Canadian literature. This finding is

robust to changes in the performance criteria or the sample considered. Our results also

highlight the short-term predictive power of the US economic activity and confirm that

financial indicators are reliable predictors of Canadian recessions, aligning with the existing

literature.

Topics: Business fluctuations and cycles, Econometric and statistical methods

JEL codes: E32, C53, C51



1 Introduction

Forecasting recessions always has been of great interest in macroeconomics, given how

such episodes can have a significant, pervasive and persistent impact on various sectors

of the economy. Foreseeing the different phases of the business cycles is also critical for

policymakers, as it may influence their ability to conduct appropriate monetary and fiscal

policies. A large body of literature, following Estrella and Hardouvelis (1991) and Estrella

and Mishkin (1998), use static probit models to predict recessions. Several studies find the

yield curve, defined as the spread between yields from government bonds with longer and

shorter maturities, to be a useful recession predictor. An inversion of the yield curve, that

is a negative bond yield spread, is nearly a perfect signal of recessions in the United-States.

An inverted yield curve is also found to be a reliable leading indicator of Canadian recessions

(Atta-Mensah and Tkacz, 1998).1 Other financial and macroeconomic leading indicators,

such as stock prices (Estrella and Mishkin, 1998), credit market activity (Levanon et al.,

2015), credit spreads, and certain employment indicators (Ng, 2014), were found to be good

predictors of recessions.

Chauvet and Potter (2005) extend the static probit model of Estrella and Mishkin

(1998) by incorporating breakpoints and autocorrelated unobservables. However, Kauppi

and Saikkonen (2008) suggest that the Bayesian estimation in Chauvet and Potter (2005)

can be computationally intensive. Therefore, they propose ad hoc dynamic probit models

that can simply be estimated by maximum likelihood estimation. The authors show

that the inclusion of the lagged binary and lagged latent variables can improve both the

in-sample and out-of-sample recessions forecasting performance of a static probit model in

the United-States. Hao and Ng (2011) replicated this analysis for the Canadian economy,

but found mixed forecasting performances across the variety of static and dynamic probit

models they considered. The authors also highlight that the bond yield spread, housing

starts, real money supply, and the composite index of leading indicators can be helpful to

predict recessions in Canada. Finally, Fossati et al. (2018) showed that factor-augmented

1This stylized fact can be seen in Figure 2 in the Appendix B.1, which shows the evolution of the bond
yield spread in Canada and in the United States over the last sixty years.
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static probit models outperform their counterparts which are based solely on observed data.

In addition, they find the real activity factor to be a good predictor of Canadian recessions,

especially at shorter-term forecast horizons.

This paper contributes to the literature in two important respects. Foremost, it is the

first one to propose an autoregressive (AR) probit model to predict Canadian recessions

while providing its formal underlying econometric and asymptotic theories. Compared to a

static probit model, the latent variable in this paper is modeled as an autoregressive process,

which captures the persistence in the underlying state of the business cycle. The presence

of the lagged latent variable smooths the recession probabilities and prevents false-positive

predictions, which makes it a great candidate for a recession prediction model. However,

the AR probit model, which is similar to one of the specifications of Chauvet and Potter

(2005), has a complex likelihood function, containing high-dimensional integrals. This

paper avoids computationally intensive Bayesian or other simulation-based techniques and

use composite likelihood (CL) estimation methods (Lindsay, 1988; Varin et al., 2011).

In particular, we use marginal composite likelihood (MCL) that significantly reduces the

complexity of the full likelihood. MCL estimation takes only a few seconds, which makes

our method much more attractive for practitioners. Additionally, in contrast to Kauppi

and Saikkonen (2008) and Hao and Ng (2011), we provide the asymptotic theory for our

estimators.2 While asymptotic results on MCL estimation are available for more general

models, such as general state space models (Varin and Vidoni, 2008; Ng et al., 2011) or AR

panel probit model with correlated random effects (Tuzcuoglu, 2023), to the best of our

knowledge, we are the first to provide them for the single-equation, time series version of

the AR probit. In addition, we also compare our empirical results to those obtained using

pairwise composite likelihood (PCL) estimators.

Second, the variable selection in this paper is performed from a broader and more

up-to-date variety of Canadian and foreign macro-financial variables relative to the existing

2The statistical properties of some of the proposed methods in Kauppi and Saikkonen (2008) are not
known. They rely on the results of de Jong and Woutersen (2011) that are valid only for the probit model
with lagged observed variable. However, for the model with a lagged latent variable, which is more akin
to our model, Kauppi and Saikkonen (2008) state that there is no formal proof of the validity for their
(asymptotic) results.
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Canadian literature. It includes various real economic activity indicators for both Canada

and the United-States, several commodity prices indices, measures of international trade,

and financial variables. We also consider for each of these twenty-six variables up to twelve

lags, which amounts to a total of three hundreds and twelve potential leading indicators.

By virtue of our fast estimation technique, we are able to run tens of thousands of probit

models to select the best predictors. This paper also incorporates the latest recession

dates published by the C.D.Howe Institute Business Cycle Council, which now includes

the COVID-19 recession and changes to previous recession dates. The model selection and

its performance assessment are conducted in this paper using the area under the receiver

operating characteristic curve (AUROC) as a performance criteria. This metric can provide

an objective assessment of a model’s classification accuracy improving on broadly-used

goodness of fit measures and scoring rules (Berge and Jordà, 2011).3

Our empirical analysis focuses on the Canadian recessions which occurred between

June 1973 and December 2022.4 We perform a variable selection procedure based on

both in-sample and pseudo out-of-sample performances. Our procedure finds the following

variables as the best predictors: the Canadian bond yield spread, the Chicago Fed National

Activity Index, and the TSX Composite Index. While the bond yield spread tends to

predict recessions well in advance, the CFNAI and TSX are usually better at shorter-term

forecasts. The reliability of US economic indicators to predict Canadian activity aligns

with the existing literature (e.g. Bragoli and Modugno (2017)), highlighting the fact that

Canada has a small and open economy who’s international trade rely heavily on its southern

neighbour. Finally, our estimation also yields a high autocorrelation coefficient capturing

the persistence of the recession indicator.

Our empirical results also highlight the superiority of the AR model over its static

counterpart, both in-sample and out-of-sample. Compared with the static probit model,

the AR probit has a significantly better fit to the data, forecasts the turning points of

3Our results are robust to a variety of criteria such as the pseudo R2, the quadratic probability score
and the root-mean-square error.

4The C.D. Howe Institute Business Cycle Council is an arbiter of business cycle dates in Canada –
similar to NBER’s Business Cycle Dating Committee in the US. Since the publication of Hao and Ng
(2011), the C.D. Howe Institute changed a few recession dates. Thus, by itself, this calls for the need of
reassessing the findings of the literature on Canadian recessions.
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business cycles more accurately, and yields much smoother probability forecasts that result

in a sizeable reduction in recession false signals. We also compare our model to those

existing in the Canadian recession forecasting literature, specifically the four static and

dynamic models considered in Hao and Ng (2011). The forecasting results show clear

evidence for significant upper hand by the AR probit model. This indicates that using a

model with an autoregressive latent component and a large set of potential predictors yield

enhancement in forecasting Canadian recessions. Our results are also robust to a variety of

changes, such as using a different sample period that excludes the COVID-19 episode and

using different performance criteria.

Finally, it is also worth mentioning another commonly used probit model for recession

prediction: the dynamic probit model that incorporates the lagged observed dependent

variable as a predictor. While this model has a satisfactory in-sample fit performance,

it is doing rather a poor job when it comes to out-of-sample forecasting. For instance,

Hao and Ng (2011) in-sample results show that this model almost always predicts the

recessions with a one period lag. Similarly, Kauppi and Saikkonen (2008) results show a

significant deterioration in out-of-sample forecasting power of this model after one period.

One obvious reason is that the lagged binary variable, which appears to be the main

determinant of the current state of the economy in empirical studies, is not known in the

out-of-sample forecasting exercise since recessions are announced with a significant lag.5

Therefore, we do not consider this model in our analysis.

The rest of this paper is organized as follow. Section 2 introduces our model, its

estimation, its asymptotic properties and the AUROC that we use to assess its performance.

Section 3 presents the data. Section 4 shows our in-sample and pseudo out-of-sample

empirical results. Section 5 shows their robustness. Finally, section 6 concludes.

5The average lag in NBER announcements for the start and end of US recessions is 7 and 15 months,
respectively.
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2 Methodology

In this section, we introduce the autoregressive probit model and its estimation by

composite likelihood methods. In particular, we provide the marginal composite likelihood

estimator of the AR probit model and discuss its asymptotic results and forecasting procedure.

2.1 Autoregressive Probit Model

For t = 1, . . . , T , we consider the following AR probit model

yt = 1[y∗t ≥ 0],

y∗t = µ+ ρy∗t−1 + β′xt−m + εt, (1)

where yt is the binary outcome, y∗t is the underlying continuous latent process, xt−m is a

K−dimensional vector of lagged observable covariates, εt is the unobservable error term,

ρ is the autocorrelation coefficient of the latent process, β is the coefficient vector, and

µ is the constant term. Note that m is the employed lag order of x, which means that

the data of x is assumed to be available for t = −m + 1, . . . , T . The model also allows

for different lags for each covariate, but for simplicity we use a common lag notation. In

practice, one chooses m ≥ H, where H is the forecast horizon. Let θ = (ρ, µ,β′)′ is the

(K + 2)-dimensional vector of parameters. For stationarity of the latent process y∗t , we

assume |ρ| < 1. The error term εt is assumed to be independent and identically distributed

with N (0, (1 − ρ2)σ2
ε) where σ2

ε = 1 is assumed for identification purposes – a typical

assumption in probit and logit models (Greene, 2003). The multiplication of the error

distribution by
√

1− ρ2 is just a reparametrization that facilitates the mathematical terms

in the distribution of y∗t .

Note that the AR probit model differs from the static (ST) probit only by the the term

ρy∗t−1, which generates persistence both in y∗t and yt. However, its presence significantly

complicates the likelihood of the AR probit model since y∗t−1 is unobserved and needs to be

integrated out. This results in the following likelihood function containing a T -dimensional
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integral

L(y|x;θ) =
∫ b1

a1

∫ b2

a2

· · ·
∫ bT

aT

ϕT (y
∗
1, . . . , y

∗
T |x;θ)dy∗1 · · · dy∗T ,

where the limits of integration are time-varying such that (at, bt) = (−∞, 0) if yt = 0, and

(at, bt) = (0,∞) if yt = 1, for all t = 1, . . . , T ; ϕT (·) is the T -dimensional joint Gaussian

density; and, x = (x′
−m+1, . . . ,x

′
T−m)

′ and y = (y1, . . . , yT )
′.6 Calculating the likelihood

function requires evaluation of the T -dimensional joint Gaussian which is computationally

demanding even for moderate T .

2.2 Marginal composite likelihood estimator

Composite likelihoods reduces the number of integrals by ignoring dependencies between

certain subsets of (y∗1, . . . , y
∗
T ). In this paper, we focus on the Marginal Composite Likelihood

(MCL) that utilizes univariate distributions of y∗t . For this, we use backward-substitution

in equation (1):

y∗t = µ+ ρy∗t−1 + β′xt−m + εt,

= (1 + ρ)µ+ ρ2y∗t−2 + β′xt−m + ρβ′xt−m−1 + εt + ρεt−1,

...

=
1− ρt

1− ρ
µ+ ρty∗0 +

t−1∑
k=0

ρkβ′xt−m−k +
t−1∑
k=0

ρkεt−k. (2)

Next, we need to make an assumption on the initial latent value y∗0. There are various

possibilities here: (i) assuming a particular non-random value for it such as y∗0 = 0 as in

Chauvet and Potter (2005) or y∗0 = (µ + β′x̄)/(1− ρ) as in Kauppi and Saikkonen (2008)

and Hao and Ng (2011), (ii) treating it as another parameter to be estimated as in Müller

and Czado (2005), (iii) drawing it from a stationary distribution as (indirectly assumed) in

Varin and Vidoni (2006). These are ad hoc assumptions on y∗0, but different choices do not

6Note that we ignored the initial value y∗0 in this formula for simplicity. Depending on the modeling
choice of y∗0 , the dimension of the integral could increase to T + 1.
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significantly affect the parameter estimates since the importance of y∗0 vanish in a large T

setting.7 However, the choice matters for the analytical derivations. Note that the first and

second conditional moments of y∗t will depend on y∗0, and thus in general on time period t.

To achieve time-homogeneity in the conditional mean, variance and covariances, we follow

the option (iii) and assume that the initial latent variable is drawn from a stationary

distribution such that

y∗0 =
1

1− ρ
µ+

1√
1− ρ2

ε0.

The underlying assumption here is that data generating process has started a long time

ago and reached its stationary distribution before the initial date of our observed data.

Incorporating y∗0 into (2), we obtain

y∗t =
1

1− ρ
µ+

t−1∑
k=0

ρkβ′xt−m−k +
ρt√
1− ρ2

ε0 +
t−1∑
k=0

ρkεt−k. (3)

Hence, the first and second conditional moments of y∗t can be derived as follows:

E[y∗t |x−m+1, . . . ,xt−m;θ] =
1

1− ρ
µ+

t−1∑
k=0

ρkβ′xt−m−k

Var[y∗t |x−m+1, . . . ,xt−m;θ] =
ρ2tVar(ε0)

1− ρ2
+

t−1∑
k=0

ρ2kVar(εt−k)

=
ρ2t(1− ρ2)σ2

ε

1− ρ2
+

1− ρ2t

1− ρ2
(1− ρ2)σ2

ε

= 1

Cov[y∗t , y
∗
t−j|x−m+1, . . . ,xt−m;θ] =

ρ2t−jVar(ε0)

1− ρ2
+ ρj

t−j−1∑
k=0

ρ2kVar(εt−j−k)

=
ρ2t−jVar(ε0)

1− ρ2
+ ρj

1− ρ2t−2jVar(εt)

1− ρ2

= ρj.

7Although not reported here, we verify this claim in Monte Carlo simulations and our estimations.
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The univariate conditional distribution of y∗t and the associated conditional recession probabilities

can be written as

y∗t |x ∼ N

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k, 1

)
,

P(yt = 1|x) = P(y∗t ≥ 0|x) = Φ

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k

)
, (4)

whereP is the probability operator. Finally, we define the marginal composite log-likelihood

as

LMCL(θ|y,x) =
1

T

T∑
t=1

ln f(yt|x;θ)

=
1

T

T∑
t=1

1(yt = 1) lnP(yt = 1|x;θ) + 1(yt = 0) lnP(yt = 0|x;θ)

=
1

T

T∑
t=1

yt lnΦ

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k

)

+ (1− yt) lnΦ

(
− µ

1− ρ
−

t−1∑
k=0

ρkβ′xt−m−k

)
, (5)

where Φ(·) is the cumulative distribution function of a standard normal distribution.

One can also use other CL functions, such as a Pairwise Composite Likelihood (PCL)

that utilizes bivariate distributions of (y∗1, . . . , y
∗
T ). Note that in this case we have the

following bivariate conditional distribution: y∗t

y∗t−j

 ∣∣∣ x ∼ N

 µ
1−ρ

+
∑t−1

k=0 ρ
kβ′xt−k

µ
1−ρ

+
∑t−j−1

k=0 ρkβ′xt−j−k

 ,

 1 ρj

ρj 1

 . (6)

The PCL relies on conditional bivariate probabilities of the form P (yt = s1, yt−j = s2|x;θ)

where s1, s2 ∈ {0, 1}. In the empirical analysis, we will compare the results of MCL and

PCL estimations, but our main focus in this paper will be on the former.
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2.3 Asymptotic properties

Let’s define the MCL estimator as θ̂ = argminθ∈Θ LMCL(θ|y,x), where Θ is the

compact parameter space containing the true parameter θ∗ in its interior. We further

assume that the covariates, x, have finite fourth moments, are strictly exogenous, satisfy the

non-singularity condition forE[xtx
′
t].

8 Following standard asymptotic literature (Amemiya,

1985; Newey and McFadden, 1994) and similar results in the CL literature (Lindsay, 1988;

Varin et al., 2011; Ng et al., 2011; Tuzcuoglu, 2023), the asymptotic distribution of the

MCL estimator, as T → ∞, can be given by

√
T (θ̂ − θ∗) →d N

(
0,H−1(θ∗)Ω(θ∗)H−1(θ∗)

)
,

whereH(θ) is the Hessian matrix andΩ(θ) is the long-run variance of the score function. A

detailed proof of the asymptotic result, consistent estimators for H(θ) and Ω(θ) matrices,

and further details can be found in the Technical Appendix A.

2.4 Forecasting

The h-period ahead latent variable conditional on information at time T , where m ≥ h,

can be written as

y∗T+h = µ+ ρy∗T+h−1 + β′xT+h−m + εT+h,

=
1− ρh

1− ρ
µ+ ρhy∗T +

h−1∑
k=0

ρkβ′xT+h−m−k +
h−1∑
k=0

ρkεT+h−k.

Note that the distribution of the composite error term is not a standard Gaussian distribution,

instead, it is
∑h−1

k=0 ρ
kεT+h−k ∼ N

(
0, 1− ρ2h

)
. Hence, when computing the h-period ahead

8These are commonly used assumptions in nonlinear dynamic panel data models (Honoré and
Kyriazidou, 2000; Wooldridge, 2005; Bartolucci and Nigro, 2010, 2012).
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forecasts, we need to scale the latent variable by
√

1− ρ2h:

PT (yT+h = 1) = PT (y
∗
T+h ≥ 0) = Φ

(
1−ρh

1−ρ
µ+ ρhy∗T +

∑h−1
k=0 ρ

kβ′xT+h−m−k√
1− ρ2h

)
,

where PT is the probability function conditional on information at time T .

Even though our MCL resembles the likelihood of the second model proposed by Kauppi

and Saikkonen (2008) (also utilized by Hao and Ng (2011)), we deviate from their model

in the forecasting procedure by taking into account the distribution of the moving-average

error term, i.e., by including the scaling factor of
√
1− ρ2h. The larger is ρ and the shorter

is the forecast horizon h, the more important becomes the scaling. Moreover, the shorter

the forecasting horizon the more impact the scaling has. However, for small ρ and distant

forecasting horizons, the scaling factor gets close to one and becomes unimportant.

2.5 Evaluation Criterion

Various measures have been proposed in the literature to assess the goodness of fit of

models with dichotomous dependent variables. First, many alternatives to the standard

linear regression R2, such as pseudo R2 measures, have been suggested (see, for example,

McFadden (1974), Cragg and Uhler (1970), Efron (1978), Estrella and Hardouvelis (1991)

and Estrella and Mishkin (1998)). Likelihood-based goodness of fit criteria, such as those

of Akaike (1973) and Schwarz (1978) (AIC and BIC), have also been used in the literature.

While these measures provide an evaluation of dichotomous models’ quality of fit, they do

not assess the models’ abilities to accurately classify binary outcomes. Another branch of

the economics literature, such as Diebold and Rudebusch (1989) or more recently Kauppi

and Saikkonen (2008), has rather leveraged scoring rules which do provide an assessment

of a model classification accuracy. Some examples include Brier et al. (1950) quadratic

probability score (QPS), the log probability score, and the root mean square error (RMSE).

However, the performance assessment based on these scores relies on the intrinsic structure

of their loss function as highlighted in Berge and Jordà (2011).

To overcome these limitations, we select the area under the receiver operating characteristic
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curve (AUROC) to assess the performance of our probit models. This measurement has the

advantage to provide a performance assessment that is independent of any loss function

since it is constructed by solely using true and false positive rates. Berge and Jordà

(2011) argues that this criterion has a major advantage over alternatives when it comes

to prediction or forecast accuracy for binary outcomes. While some studies use the ROC

analysis for US recessions (e.g. Liu and Moench (2016)), to the best of our knowledge, our

paper is the first one to use it to assess the classification accuracy of recessions in Canada.

The ROC curve is a simple graphical representation which summarizes the classification

ability of a model with a binary dependent variable. Let’s define the estimated recession

binary variable as ŷt(τ) ≡ 1 [P(yt = 1|x) > τ ], where τ is a threshold value and P(yt = 1|x)

is the model-based conditional recession probability (showed in Equation (4) for the AR

probit model). Given a set of observed and estimated recession binary variables, we can

express a model’s true positive rate TPR(τ) and false positive rate FPR(τ) at any threshold

τ ∈ [0, 1] as

TPR(τ) =

∑T
t=1 1[ŷt = 1, yt = 1]∑T

t=1 1[yt = 1]
and FPR(τ) =

∑T
t=1 1[ŷt = 1, yt = 0]∑T

t=1 1[yt = 0]
.

Note that, for any given level of threshold τ , the model provides a different set of ŷt’s,

and thus, different TPRs and FPRs. The ROC curve plots TPR against FPR for all

τ ∈ [0, 1], representing the trade-off between them. Finally, the AUROC is obtained by

calculating the area under the ROC curve, which is independent from τ . The higher is

the AUROC value, the better is the classification performance of a model. Furthermore,

we can statistically test the difference in two AUROC values by using bootstrap methods

(Carpenter and Bithell, 2000), which is important for comparing model performances.

Note that studies in the recession forecasting literature commonly use τ = 25% or

τ = 50% as the threshold values to define a recession. Consequently, we provide our OOS

classification results also under these two fixed threshold values. As further robustness

checks, we also present performance comparisons based on other criteria, such as pseudo

R2, QPS, and RMSE. The AR probit model has a superior forecasting performance under

any classification criterion.
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3 Data

This section discusses the data underlying the binary recession variables and the leading

indicators. Our dataset covers the time period between June 1973 and December 2022.

More details such as data sources, variable abbreviations and their detailed descriptions

can be found in Table 9 of Appendix B.2.

3.1 Canadian Recessions

In this analysis, the binary variable yt is set equal to one if the economy is experiencing

a recession in period t and to zero otherwise. To define this binary variable, we use

the definition from the C.D.Howe Institute Business Cycle Council.9 The council defines

recessions as periods of pronounced, pervasive, and persistent decline in aggregate economic

activity. For instance, the Great Recession is a good example of such a period of contraction.

During that episode, the fall in real GDP and employment were sharp, broad-based across

industries and lasted for an extended period. Over the last fifty years, other economic

downturns have occurred in Canada, without necessarily meeting all the magnitude, length,

and scope criteria required to be considered a recession. For instance, the burst of the

dotcom bubble in 2001 and the 2014-15 oil price shock resulted in economic downturns,

but they were not classified as a recession by the C.D. Howe Institute. The list of the

recessions considered in this paper are provided in Table 1.

It is worth noting that the commonly recognized definition of a recession has greatly

evolved since the latest publications in the Canadian recession forecasting literature. For

instance, Hao and Ng (2011) define a recession in terms of the cumulative absence of positive

growth over two consecutive quarters, in line with Cross (1996) and Cross (2001). More

recent papers, such as Fossati et al. (2018), use a definition of a recession consistent with

the first report from the C.D. Howe Institute Business Cycle Coucil (Cross and Bergevin,

2012). However, the council has revised notably their recession dates since their first report,

reflecting various factors such as Statistics Canada’s expansion of the expenditure-based

9In this paper, we use their latest 2021 update. See Cross and Bergevin (2012) for a more comprehensive
review of their original methodology.
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Table 1: Recessions in Canada between 1974 and 2022

Peak Trough Description

1974-October 1975-March 1973 oil crisis
1981-June 1982-October Monetary policy tightening
1990-March 1992-May Gulf War
2008-October 2009-May Great Financial Crisis
2020-February 2020-April COVID-19

Notes: The recession dates presented in this table reflect the definition
of the C.D. Howe Business Cycle Council, consistent with their ninth
and most recent report (C.D.Howe, 2021).

GDP time series back to 1961 from 1981 (C.D.Howe, 2017). Methodological changes

have also been implemented to better reflect the importance of the breadth to determine

recessions (C.D.Howe, 2019). By itself, these changes in the definition of a recession call

for the need of reassessing the findings of the literature on Canadian recessions, which we

undertake in this paper.

3.2 Explanatory variables

To select potential explanatory variables, we start by considering macro-financial indicators

that were found to be informative to predict recessions in Canada based on Hao and Ng

(2011), which include the bond yield spread (SP), housing starts (HS), real money supply

(M1) and a composite leading indicator (CLI).10 We build on the existing literature by

considering additional domestic indicators.

First, we add the Canadian version of the Sahm rule (SAHM) based on Sahm (2019).

This measurement represents the difference between the 3-month moving average of the

unemployment rate relative to its prior 12-month low. While this indicator tends to lag

slightly the peaks in the business cycles, it is a highly reliable signal of recessions in the

US, which also happen to be the case for Canada (see Figure 3 in Appendix B.1). Second,

we consider other domestic indicators included in the CLI and considered in the literature

(e.g. Liu and Moench (2016)). This includes the consumer confidence index (CCI), the

10Given that the original CLI series used by used Hao and Ng (2011) is discontinued, we replace it using
the OECD Composite Leading Indicator.
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S&P/TSX composite index (TSX) and building permits (BP).

In order to better reflect some of the specificities of the Canadian economy, we also

consider a variety of global and commodity prices indicators. As highlighted in Binette et al.

(2017), exports play a particularly important role for a small open economy like Canada. In

fact, exports represent about one third of Canadian GDP and are highly volatile. Therefore,

they have a substantial impact on quarterly GDP dynamics.11 Accordingly, we incorporate

in our pool of potential leading indicators various foreign economic activity measures, with a

particular focus on US economic indicators. This prevalence of the US variables stems from

the fact that about three-quarters of Canadian merchandise exports are shipped towards

their southern neighbour. In particular, we embed in our pool of variables: global exports

(WEX), real Canadian merchandise exports (EX) and imports (IM), US employment

(USE), US industrial production (USIP), the US Purchasing Manager Index (USPMI),

and the Chicago Fed National Activity Index 3-month moving average (CFNAI).

The commodity-related sector also plays an important role in the Canadian economy,

which motivates the inclusion of various energy and non-energy commodity prices indicators.

In 2019, the nominal share of production related to this sector was about 7.5 percent.12

Canada is also a major commodity exporter, with commodities representing more than

55% of Canadian goods exports. We measure commodity prices using the Bank of Canada

Commodity Price Index (BCPI), which is a chain Fischer index of the spot price of 26

commodities produced in Canada (Kolet and Macdonald, 2010). We also include seven

key BCPI subcomponents, such as oil and metal prices (BCPI-O & BCPI-M), and the

non-energy commodity prices index (BCNE).

4 Empirical Analysis

In this section, we discuss the best predictors for Canadian recessions and present our

in-sample and pseudo out-of-sample results.

11For instance, the average absolute annualized contribution to GDP growth from exports stands close
to three percentage points between 1961 and 2022.

12See the annual GDP by industry account from Statistics Canada for agriculture, forestry, fishing and
hunting, mining, quarrying, and oil and gas extraction.

16



4.1 In-sample results

In this section, we present the variable selection procedure and provide an in-sample

performance comparison of the autoregressive (AR) and static (ST ) probit models, formally

defined in section 2. In order to identify the optimal set of covariates (and their lags) for

these models, we follow a procedure similar to Hao and Ng (2011):

1. First, we conduct a pre-screening of the potential explanatory variables. To do so,

we estimate single-regressor static equations for each variables identified in Table 9 of

Appendix B.2, allowing their lags to vary between one and twelve-months ahead. This

results in twelve different models per explanatory variable. We estimate these models

using MCL with data going from June 1973 to December 2022, and compute their

in-sample AUROC values (Table 10 of Appendix C). 13 Then, we create a shortlist by

selecting the ten regressors having the highest average AUROC values across these

forecast horizons (Table 2).14

2. Second, we combine the best regressor, at its optimal lag, with any two remaining

variables from Table 2, by allowing the lags of these two additional regressors to vary

between one and twelve months ahead. We assess the performance of the resulting

three-variables AR or ST probit model using their in-sample AUROC values.

3. Third, from the best thirty models in-sample identified in step 2, we select the model

having the highest AUROC value obtained from the pseudo out-of-sample (OOS)

exercise (see section 4.2 for more details on the OOS exercise). This step ensures a

balance between the in-sample and out-of-sample performances.

Table 2 shows the best ten explanatory variables based on their average in-sample

AUROC values. Consistent with the literature, the bond yield spread stands out as the

best single predictor at longer forecast horizons (above six months-ahead). The solid

performance of this indicator at a longer range partly reflect the forward-looking information

13Note that we assess all models in-sample performance over a fix period going from November 1974 to
December 2022.

14This step allows us to conduct the combined optimization procedure on a smaller list of variables,
which is less computationally intensive.
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Table 2: Shortlist of potential explanatory variables

Forecast horizon (h)
Order Mnemonic 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

1 CFNAI 0.874 0.864 0.864 0.853 0.838 0.809 0.785 0.760 0.755 0.744 0.741 0.727 0.801
2 SP 0.660 0.697 0.728 0.755 0.782 0.803 0.821 0.822 0.826 0.832 0.837 0.842 0.784
3 SAHM 0.854 0.823 0.797 0.771 0.744 0.713 0.682 0.653 0.627 0.615 0.614 0.614 0.709
4 CLI 0.602 0.649 0.706 0.740 0.754 0.756 0.747 0.728 0.708 0.691 0.680 0.672 0.703
5 USE 0.754 0.753 0.738 0.701 0.681 0.654 0.649 0.627 0.631 0.608 0.615 0.586 0.666
6 USIP 0.711 0.692 0.709 0.679 0.666 0.658 0.631 0.612 0.638 0.610 0.621 0.614 0.653
7 BCNE 0.650 0.655 0.662 0.654 0.677 0.683 0.672 0.667 0.635 0.611 0.610 0.597 0.648
8 TSX 0.651 0.661 0.693 0.671 0.671 0.684 0.668 0.654 0.618 0.614 0.593 0.584 0.647
9 BCPI-M 0.622 0.640 0.676 0.710 0.738 0.703 0.666 0.629 0.595 0.571 0.596 0.576 0.644
10 M1 0.615 0.641 0.647 0.627 0.643 0.648 0.625 0.610 0.611 0.595 0.614 0.600 0.623

Notes: this table shows the in-sample AUROC values calculated from single-variable static probit models,
with lags varying between one and twelve-months ahead. The last column provides the average AUROC
values across these forecast horizons. The models are estimated using MCL with data going from June 1973
to December 2022. This table contains the ten best explanatory variables based on their average in-sample
AUROC. See Table 10 in Appendix C for the complete list.

it conveys about market participants perceptions of risk and expectations of future interest

rates. The CFNAI, however, appears to be the best single predictor of economic downturns

at shorter horizons, outperforming the other indicators when considering forecasts conducted

between one and six-month ahead. US employment and industrial production are also

strong predictors at this forecast horizon, although to a lower extent. The strong leading

properties of these US economic indicators on Canadian downturns is quite intuitive given

that Canada has a small and open economy which international trade relies heavily on its

southern neighbour.15 Other domestic variables, such as the Canadian Sahm indicator and

the composite leading indicator are also particularly informative for Canadian recessions

at shorter forecast horizons. Finally, commodity prices offer a moderate performance

which generally peaks before the seven-month ahead forecast horizon. Commodity-prices

excluding energy (BCNE) and metal prices (BCPI-M) stands out as the best commodity

prices subindices.

Table 3 shows the regression results for the optimal AR and ST model specifications that

were obtained using the variable selection procedure previously described. The bond yield

spread and the CFNAI appear among the best predictors, as they are selected in both

15In 2022, about 75% of Canadian nominal exports were shipped towards the United-States.
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the AR and the ST equations. In addition, the TSX composite index and real money

supply are selected as the third regressors in the AR and in the ST models, respectively.

All these regressors’ coefficients have negative values, suggesting that an improvement in

these indicators imply a lower recession probability. It is worth noting that the AR model

has a high and statistically significant autoregressive coefficient ρ, highlighting the strong

auto-correlation component of the latent process y∗t , and thus that of yt. Finally, we can

see that the AR model outperforms the ST model, with a significant five percentage points

advantage in its AUROC value. Table 11 in the Appendix C also shows that this advantage

is robust to a variety of performance measurements, such as the pseudo R2, the QPS and

the RMSE.

Table 3: In-sample regression results

Specifications

ARMCL ST

SPt−7 −0.116∗∗∗

(0.022)

CFNAIt−1 −0.052 −0.640∗∗∗

(0.040) (0.140)

TSXt−1 −0.091∗∗∗

(0.024)

SPt−12 −0.503∗∗∗

(0.066)

M1t−2 −0.426∗∗∗

(0.117)

y∗t−1 0.922∗∗∗

(0.016)

Constant −0.071∗ −1.090∗∗∗

(0.039) (0.108)

AUROC 0.987 0.9379
DIFF 0.049∗∗∗

Notes: This regression table contains the parameters of the
optimal AR and ST probit models, estimated by MCL using
data from June 1974 to December 2022. The last line shows
the difference between both models AUROC values, along
with its test of significance (Carpenter and Bithell, 2000).
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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4.2 Out-of-sample results

We now compare the performance of the AR and ST probit models by assessing their

forecasting abilities in a more realistic situation. Given that real-time data vintages are

not available for every regressors contained in our models, we limit our analysis to a pseudo

out-of-sample forecasting exercise. To proceed, we first estimate the models using a sample

going from June 1973 to March 1989 and obtain a first one-month ahead forecast for April

1989. Next, we add this last observation to our estimation sample and obtain a second

one-month ahead forecast for May 1989. We repeat this expanding-window procedure

recursively until we obtain a forecast for December 2022, which corresponds to the last

month of our sample. The choice of this forecasting period allows us to test the models on

three recessions, namely the 1990’s recession, the GFC, and the COVID-19 pandemic. For

the sake of simplicity, we assume that the values of the explanatory variables xt are know

at the same time as the binary variable yt. Note that relaxing this assumption, to better

account for the recession dates publication delays, would only have a marginal impact on

the relative performance of the ST and AR models.16

Table 4 compares the OOS performance of the two models considered at a one-month

ahead forecast horizon. Such as for the in-sample results, we can see that the AR model

outperforms the ST model based on their AUROC values. This advantage holds also for

other performance measurements. As a sanity check, we also verify in Table 4 that our AR

model outperforms reproduced versions of the models proposed in Hao and Ng (2011).17

Let’s have a closer look at how the models perform during the three recessions contained

in the simulation period. Figure 1 plots the one-month ahead forecasted recession probabilities

for both the AR and ST probit models.18 First, we can observe that both the AR and

ST models provide a meaningful response during the three recessions analyzed, although

16Certain papers, such as Hao and Ng (2011), assume that the values of the explanatory variables xt are
known six months in advance relative to the recession binary variable yt.

17The four probit models presented by Hao and Ng (2011) are labelled as: static (STHN ), dynamic
(DYNHN ), autoregressive (ARHN ) and dynamic autoregressive (DYNARHN ). Note that methodological
differences, such as the forecasts scaling, differentiate ARMCL from ARHN . It is also worth noting that
the authors use a different sample and recession definition to select their optimal models, which makes this
exercise an imperfect comparison.

18We only present the ST model in Figure 1, as it represents the best benchmark for the OOS exercise.
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Table 4: Models OOS performance comparison (h = 1)

Model AUROC DIFF R2 QPS RMSE
ARMCL 98.2% 78.3% 3.4% 13.1%
ST 96.6% 1.5% 45.9% 8.5% 20.7%
STHN 93.6% 4.5% 46.3% 8.5% 20.6%
DYNHN 87.1% 11.1%∗∗∗ 44.7% 8.7% 20.9%
ARHN 91.3% 6.8%∗∗∗ 43.0% 9.0% 21.2%
DYNARHN 87.3% 10.9%∗∗∗ 43.9% 8.9% 21.0%

Notes: The second column shows the difference between the ARMCL and the specified model
AUROC values, along with its test of significance. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2, QPS
and RMSE stand for the pseudo R2, quadratic probability score and root-mean squared error,
respectively. The first two rows reflect the performance of the AR and ST probit models
presented in this paper. The last four rows reflect the performance of the static (STHN ), dynamic
(DYNHN ), autoregressive (ARHN ) and dynamic autoregressive (DYNARHN ) probit models
replicated from Hao and Ng (2011).

Figure 1: Forecasted probabilities from OOS exercise (h = 1)
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Notes: this figure compares the one-month ahead forecasts (h = 1) between the ARMCL and ST probit
models over the OOS exercise simulation period (April-1989 to December 2022). The two dashed lines
represent the 25% and 50% thresholds, respectively.

not always identifying precisely the turning points. Both models also yield a significant

response in 2001, which corresponds to the burst of the dotcom bubble. Despite this

episode not being considered an official recession, the 2001 pick-up in the AR model

forecasted probabilities mostly reflect the deterioration in US economic activity and in
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Table 5: Turning points identification (OOS)

25% threshold 25% threshold

Peaks ARMCL ST Troughs ARMCL ST

March 1990 -2 +3 May 1992 -4 -4
October 2008 +1 -5 May 2009 0 +1
February 2020 +1 +1 April 2020 0 +3

Notes: (+a) or (−a) imply that a model identifies a turning point ”a” months too late or too
early. A peak is identified too early (late) if the model’s forecasted probability exceed a given
threshold before (after) the actual peak. A trough is identified too early (late) if the model’s
forecasted probability fell below a given threshold before (after) the actual trough. The lags
and leads in this table are assessed at the 25% threshold.

the TSX composite index. It is worth noting that the ST model’s forecasts are much more

volatile, and therefore, provide more false signals at lower thresholds relative to the AR

model. For instance, the ST models’ FPR at the 12.5% threshold is about 8%, almost

four times larger than the AR model’s rate (Table 12 in Appendix C). In contrast, we can

see that the AR model’s forecasts are much smoother than the ST model outside of the

recessions, reflecting the model’s higher persistence due to its autoregressive feature.

In Table 5, we assess more precisely the models’ accuracy to identify the turning points

in the business cycles over the simulation period. First, we can see that the AR model is

generally more precise than the ST to signal peaks in the business cycles. While the AR

model is a bit early in calling the 1990s recession, it is only one month late in identifying

the peaks preceding the GFC and the COVID-19 pandemic. In contrast, the ST model

is generally off by a larger amount, especially in the case of the GFC, where the model

identifies the peak five months too early. The AR advantage over the ST equation is also

obvious when looking at the identification of the troughs: the AR model perfectly identifies

the turning points at the 25% threshold for the last two recessions of the OOS exercise.

Note that the choice of the threshold can impact the models ability to identify the turning

points, although the relative advantage of the AR model at other thresholds remains (see

Table 13 in Appendix C).

Finally, we compare in Table 6 the in-sample and OOS performance between the

autoregressive probit model estimated using the MCL and PCL estimators (ARMCL and
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ARPCL, respectively). While the estimated parameters using PCL should theoretically

be more efficient than those obtained by using MCL, our results in Table 6 suggest that

no empirical advantage is obtained from using the former estimator. In addition, it is

worth noting that the PCL estimation takes significantly longer that the MCL estimation.

However, there are two main caveats preventing us to reach robust conclusions from this

exercise. First, the optimal AR model presented in this paper was selected using the

MCL estimators, resulting into an obvious advantage in favour of ARMCL. Second, this

comparison is conducted using one model only. A more thorough comparison, including

several model specifications, would be required to generalize these findings.

Table 6: Performance comparison between ARMCL and ARPCL (AUROC)

Model In-sample OOS
ARMCL 0.9871 0.9817
ARPCL 0.9865 0.9807
Difference 0.0006 0.0010

Notes: This table shows the in-sample and OOS AUROC
values obtained from the MCL and PCL estimations.

5 Robustness

In this section, we assess the sensitivity of our empirical results to the exclusion of the

COVID-19 recession from both the in-sample and pseudo out-of-sample analysis. Given

the historical data volatility observed during this period, it is reasonable to assess how the

relative performance of the models respond to this change. Table 7 presents the regression

results of the ARMCL and of the ST model estimated with a sample going from June

1973 to December 2019, and using the same selection procedure as described in subsection

4.1. For the ARMCL model, the variable selection is fairly close to the complete in-sample

analysis, with the only difference being that the TSX variable is now lagged by two months

instead of one. For the ST model, M1t−2 is now replaced by SAHMt−9 and the bond yield

spread has now a shorter lag (seven months instead of twelve). We can see that both

models in-sample AUROC values are better relative to those obtained when including

the COVID-19 pandemic (see Table 14 in Appendix C for the complete in-sample results).
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Although the difference between the ARMCL and the ST models’ AUROC values is smaller,

the former model continues to have a significant 1.7 percentage points advantage over

its static counterpart. Table 8 presents the results of the pseudo out-of-sample exercise

conducted between April 1989 and December 2019. Similar to the in-sample results, all

AUROC values are still better relative to those obtained using the complete sample. Again,

the advantage of the AR model over the ST model reduces when looking at the AUROC

values, but remains substantial when looking at the other performance criteria. Finally,

the AR model significantly outperforms the replicated models from Hao and Ng (2011)

through all performance criteria considered in the OOS exercise, supporting the robustness

of our results.

Table 7: In-sample regression results (ex. COVID)

Specifications

ARMCL ST

SPt−7 −0.138∗∗∗ −0.564∗∗∗

(0.022) (0.080)

CFNAIt−1 −0.056 −1.507∗∗∗

(0.044) (0.195)

TSXt−2 −0.102∗∗∗

(0.019)

SAHMt−9 0.795∗∗∗

(0.124)

y∗t−1 0.909∗∗∗

(0.021)

Constant −0.099∗∗ −1.978∗∗∗

(0.049) (0.191)

AUROC 0.993 0.975
DIFF 0.017∗∗∗

Notes: This regression table contains the parameters of the
optimal AR and ST probit models, estimated by MCL using
data from June 1974 to December 2019. The last line shows
the difference between both models AUROC values, along
with its test of significance (Carpenter and Bithell, 2000).
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 8: Models OOS performance comparison (h = 1, ex. COVID)

Model AUROC DIFF R2 QPS RMSE
ARMCL 99.5% 75.4% 4.0% 14.1%
ST 99.1% 0.3 % 51.9% 7.8% 19.8%
STHN 94.6% 4.8%∗ 48.2% 8.4% 20.5%
DYNHN 87.5% 11.9%∗∗∗ 50.3% 8.1% 20.1%
ARHN 92.0% 7.4%∗∗ 48.9% 8.3% 20.4%
DYNARHN 87.7% 11.8%∗∗∗ 49.4% 8.2% 20.3%

Notes: The second column shows the difference between the ARMCL and the specified model
AUROC values, along with its test of significance.∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2, QPS and
RMSE stand for the pseudo R2, quadratic probability score and root-mean squared error,
respectively. The first two rows reflect the performance of the AR and ST probit models
presented in this paper. The last four rows reflect the performance of the static (STHN ), dynamic
(DYNHN ), autoregressive (ARHN ) and dynamic autoregressive (DYNARHN ) probit models
replicated from Hao and Ng (2011).

6 Conclusion

Recessions have significant, pervasive and persistent economic consequences, and therefore,

their prediction has attracted a great interest from both academicians and practitioners.

In this paper, we use an autoregressive probit model to forecast recessions in Canada.

Compared to its static counterpart, the AR model contains a lagged latent variable, which

helps capturing the autocorrelation in the recession binary variable. However, the AR

probit model results in an intractable likelihood function containing a high dimensional

integral. Therefore, we propose using composite likelihood methods which yield consistent,

asymptotically normally distributed, and less computationally-intensive estimators. This

fast estimation method allows us to perform a variable selection procedure on a large variety

of Canadian and foreign macro-financial variables. We use the AUROC as the classification

performance criterion, although our results are robust to a variety of performance measurements.

Our results suggest that the best leading indicators of Canadian recessions are the

Chicago Fed National Activity Index (CFNAI), the Canadian government bond yield

spread, and the the S&P/TSX composite index. In particular, the CFNAI has a short-term

predictive power on Canadian recessions reflecting the interconnectedness between both

economies. In contrast, the bond yield spread is a reliable long-term predictor for recessions,
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aligning with the existing literature. Our model comparison shows that the AR probit

model provides superior in-sample and pseudo out-of-sample performances relative to its

static version. The AR model fits the data better, identifies the business cycle turning

points more accurately, and yields much smoother recession probability forecasts that

results in much fewer false signals. Finally, our AR probit model has a superior forecasting

performance compared to a variety of static and dynamic probit models proposed in the

Canadian recession literature.
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A Technical appendix

In this technical section, we provide the mathematical details for the asymptotic distribution

of the MCL estimator. In particular, we compute the first and second derivatives of

the MCL, derive the score and its long-run variance, calculate the Hessian matrix, and

provide the asymptotic variance of the estimator. First, we introduce some notation: let

mt ≡ mt(θ) = mt(x,θ) = µ/(1 − ρ) +
∑t−1

k=0 ρ
kβ′xt−m−k such that y∗t |x ∼ N (mt, 1). We

may suppress the dependency on θ or x for notational simplicity throughout mathematical

derivations.

Derivatives of mt(θ)

The derivatives of mt(θ) are needed to calculate the asymptotic variance. Note that

mt(θ) can be also written as mt(θ) = µ + ρmt−1(θ) + β′xt−m with m0(θ) = µ/(1 − ρ).

Then, the first derivative of mt(θ) can be recursively computed as

∂mt(θ)

∂θ
= ρ

∂mt−1(θ)

∂θ
+


mt−1(θ)

1

xt−m

 with
∂m0(θ)

∂θ
=


µ/(1− ρ)2

1/(1− ρ)

0

 .

The second derivative of mt(θ) can be computed as

∂2mt(θ)

∂θ∂θ′ = ρ
∂mt−1(θ)

∂θ∂θ′ + e1
∂mt−1(θ)

∂θ′ +
∂mt−1(θ)

∂θ
e′1 with

∂m0(θ)

∂θ∂θ′ =


2µ

(1−ρ)3
1

(1−ρ)2
0

1
(1−ρ)2

0 0

0 0 0

 ,

where e1 = (1, 0, . . . , 0)′ is of dimension (K + 2)× 1.
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Asymptotic distribution

Let us rewrite the marginal composite log-likelihood as

LMCL(θ|y,x) =
1

T

T∑
t=1

ln f(yt|x;θ) =
1

T

T∑
t=1

yt lnΦ (mt(θ)) + (1− yt) lnΦ (−mt(θ)) .

The score of the individual log-likelihood is st(θ) = s(θ|yt,x) = ∂ ln f(yt|x; θ)/∂θ, where

s(θ|yt,x) = yt
∂ lnΦ (mt(θ))

∂θ
+ (1− yt)

∂ lnΦ (−mt(θ))

∂θ

= yt
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (mt(θ))
− (1− yt)

∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (−mt(θ))
. (7)

Note that ϕ(mt(θ)) = ϕ(−mt(θ)). The hessian of the individual log-likelihood is ht(θ) =

ht(θ|yt,x) = ∂2 ln f(yt|x; θ)/∂θ∂θ′, where

ht(θ|yt,x) = yt
∂2 lnΦ (mt(θ))

∂θ∂θ′ + (1− yt)
∂2 lnΦ (−mt(θ))

∂θ∂θ′

= yt
∂

∂θ′

[
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (mt(θ))

]
− (1− yt)

∂

∂θ′

[
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (−mt(θ))

]
= yt

[
∂2mt(θ)

∂θ∂θ′
ϕ(mt(θ))

Φ (mt(θ))
+

∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
−mt(θ)ϕ(mt(θ))

Φ (mt(θ))
+

−ϕ(mt(θ))
2

Φ (mt(θ))
2

)]
− (1− yt)

[
∂2mt(θ)

∂θ∂θ′
ϕ(mt(θ))

Φ (−mt(θ))
+

∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
−mt(θ)ϕ(mt(θ))

Φ (−mt(θ))
+

ϕ(mt(θ))
2

Φ (−mt(θ))
2

)]
= yt

ϕ(mt(θ))

Φ (mt(θ))

[
∂2mt(θ)

∂θ∂θ′ − ∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
mt(θ) +

ϕ(mt(θ))

Φ (mt(θ))

)]
− (1− yt)

ϕ(mt(θ))

Φ (−mt(θ))

[
∂2mt(θ)

∂θ∂θ′ − ∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
mt(θ)−

ϕ(mt(θ))

Φ (−mt(θ))

)]
(8)

One can easily show the uniform boundedness of the score and Hessian. First, by

following the steps in the online appendix of Tuzcuoglu (2023), we can show that |∂mt(x,θ)/∂θ|

and |∂2mt(x,θ)/∂θ∂θ
′| are both uniformly bounded as long as |x| = |(x−m+1, . . . ,xT−m)

′|

is bounded, where | · | is the Euclidean norm. Second, note that the inverse Mills ratio

|ϕ(ν)/Φ(ν)| is bounded by a linear function of ν for any ν ∈ R. This implies that

|ϕ(mt(x,θ))/Φ(mt(x,θ))| is uniformly bounded as long as |x| is bounded. Finally, these

two results imply that both the variance of the score and the Hessian matrix is uniformly
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bounded by a linear function of the fourth moment of x.

Under the assumptions given in Section 2 and following the asymptotic results of Newey

and McFadden (1994) and Tuzcuoglu (2023), one can show that the score and Hessian

satisfy the following asymptotics:

s(θ) =
1

T

T∑
t=1

s(θ|yt,x) =
1

T

T∑
t=1

∂ ln f(yt|x;θ)
∂θ

→d N (0,Ω(θ)) ,

h(θ) =
1

T

T∑
t=1

h(θ|yt,x) →p H(θ),

where H(θ) is the Hessian matrix and Ω(θ) is the long-run variance of the score that

can be computed as Ω(θ) = Ω0(θ) +
∑∞

l=1 Ωl(θ) + Ω′
l(θ) with Ω0(θ) = Var(st(θ)) and

Ωl(θ) = Cov(st(θ), st−l(θ)). Then, for the true parameter θ∗, the asymptotic distribution

of the MCL estimator can be given by

√
T (θ̂ − θ∗) →d N

(
0,H−1(θ∗)Ω(θ∗)H−1(θ∗)

)
.

An estimator for the Hessian matrix is

Ĥ(θ̂) =
1

T

T∑
t=1

[
yt
∂2 lnΦ(mt(θ̂))

∂θ∂θ′ + (1− yt)
∂2 lnΦ(−mt(θ̂))

∂θ∂θ′

]
,

where the second derivatives are given in (8) in detail. Moreover, the derivatives of mt(θ)

are given at the end of this section. To obtain an estimator of the long-run matrix Ω(θ),

we rely on Newey and West (1994) for the bandwidth selection and Gallant (1987) for the

Parzen kernel weights. Then, an estimator of Ω(θ) can be given by

Ω̂(θ̂) = Ω̂0(θ̂) +

MT∑
l=1

Ω̂l(θ̂) + Ω̂′
l(θ̂),

=
1

T

T∑
t=1

st(θ̂)s
′
t(θ̂) +

1

T

MT∑
l=1

κ(l/MT )
T∑

t=l+1

st(θ̂)s
′
t−l(θ̂) + st−l(θ̂)s

′
t(θ̂),
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where the bandwidth is MT = ⌊12(T/100)4/25⌋ and the Parzen kernel is

κ(l/MT ) =

 1− 6|l/MT |2 + 6|l/MT |3 if 0 ≤ l/MT ≤ 0.5,

2(1− |l/MT |)3 if 0.5 < l/MT ≤ 1.

Note that ⌊·⌋ denotes the floor function. This choice of bandwidth provides better asymptotic

results – in terms of correct sizes of nominal t-tests – in the Monte Carlo simulations

compared with the bandwidth choice of ⌊4(T/100)2/9⌋ as in Kauppi and Saikkonen (2008)

that results in smaller estimated standard errors, thus, higher over-rejection rates. The

results are available upon request.
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B Data appendix

B.1 Figures

Figure 2: Evolution of the yield curve in Canada and in the United-States over history

(a) Canada

(b) United-States

Notes: The bond yield spreads are shown in percentage points on the y-axis. The United-States spread
reflects the difference between the 10-year and 3-month treasuries yields, while the Canadian spread is
the difference between the 10-year and over government of Canada marketable bonds and the 3-month
treasury bills yields. Recession dates are represented by the shaded grey area in Figures 2a and 2b. Those
are defined by the C.D. Howe Institute in Canada and by the National Bureau of Economic Research
(NBER) in the United-States.
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Figure 3: Canadian version of the Sahm rule

Notes: the Canadian Sahm rule is consistent with the measurement proposed
in Sahm (2019) (see Figure 2). This indicator represents the percentage points
difference between the 3-month moving average of the unemployment rate and
its prior year minimum. We use the seasonally adjusted unemployment rate from
Statistics Canada Labour Force Survey to replicate this indicator for Canada.
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B.2 Potential explanatory variables

Table 9: List of potential explanatory variables

Variable Mnemonic Description Source Period

Canadian Sahm rule SR Unemployment rate
(3-month moving
average) relative to
prior 12-month low

Sahm (2019),
Statistics Canada
Labour Force Survey

Mar 1956 - Dec 2022

Housing starts HS Month-to-month log
difference of housing
starts

Canada Mortgage
and Housing
Corporation
(CMHC)

Feb 1956 - Dec 2022

Consumer
confidence

CCI Month-to-month
growth rate of
consumer confidence

Conference Board of
Canada and Bank of
Canada calculations

Apr 1961 - Dec 2022

Railway Carloadings RAIL Month-to-month log
difference of rail
carloads, seasonally
adjusted

Statistics Canada
and Bank of Canada
Calculations

Feb 1970 - Dec 2022

Building Permits BP Month-to-month log
difference of building
permits, seasonally
adjusted

Statistics Canada
and Bank of Canada
Calculations

Feb 1948 - Dec 2022

Composite Leading
Indicator

CLI Month-to-month
growth rate of the
Composite Leading
Indicator, seasonally
adjusted, amplitude
adjusted

OECD Feb 1956 - Dec 2022

M1 M1 Month-to-month
growth rate of
money supply
(M1++), CPI
deflated, seasonally
adjusted

Bank of Canada February 1968 - Dec
2022

Exchange rate CAD Month-to-month
growth rate of
exchange rate
(US$/CAD$)

Federal Reserve
Board and Haver

Feb 1947 - Dec 2022

TSX Composite
Index

TSX Month-to-month
growth rate of the
TSX Composite
Index, CPI deflated

S&P Feb 1921 - Dec 2022

Bond yield spread SP Difference between
the over 10 years
government of
Canada marketable
bonds yield and
3-months treasury
bills yield

Bank of Canada Jan 1962 - Dec 2022
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Variable Mnemonic Description Source Period

Drilling rigs RIGS Month-to-month log
difference of drilling
rigs count,
seasonally adjusted

Baker Hughes and
Bank of Canada
Calculation

Feb 1968 - Dec 2022

Goods exports EX Month-to-month log
difference of
Canadian
merchandise
exports, seasonally
adjusted

Statistics Canada
and Bank of
Canada
Calculations

Feb 1968 - Dec 2022

Goods imports IM Month-to-month log
difference of
Canadian
merchandise
imports, seasonally
adjusted

Statistics Canada
and Bank of
Canada
Calculations

Feb 1968 - Dec 2022

BCPI - Total BCPI Month-to-month
growth rate of the
BCPI, CPI deflated

Bank of Canada Feb 1972 - Dec 2022

BCPI - Crude oil BCPI-O Month-to-month
growth rate of the
crude oil BCPI,
CPI deflated)

Bank of Canada Feb 1972 - Dec 2022

BCPI - Natural gas BCPI-G Month-to-month
growth rate of the
natural gas BCPI,
CPI deflated

Bank of Canada Feb 1972 - Dec 2022

BCPI - Agriculture BCPI-A Month-to-month
growth rate of the
agriculture BCPI,
CPI deflated

Bank of Canada Feb 1972 - Dec 2022

BCPI - Metals BCPI-M Month-to-month
growth rate of the
metals BCPI, CPI
deflated

Bank of Canada Feb 1972 - Dec 2022

BCPI - Forestry BCPI-F Month-to-month
growth rate of the
forestry BCPI, CPI
deflated

Bank of Canada Feb 1972 - Dec 2022

BCPI - Energy BCPI-E Month-to-month
growth rate of the
energy BCPI, CPI
deflated

Bank of Canada Feb 1972 - Dec 2022

BCNE BCNE Month-to-month
growth rate of the
BCNE, CPI
deflated

Bank of Canada Feb 1972 - Dec 2022

CFNAI CFNAI Chicago Fed
National Activity
index, 3-months
moving average

Federal Reserve
Bank of Chicago

May 1967 - Dec
2022

37



Variable Mnemonic Description Source Period

US industrial
production

USIP Month-to-month
growth rate of the
industrial
production index,
seasonally adjusted

Board of Governors
of the Federal
Reserve System

Feb 1921 - Dec 2022

US employment USE Month-to-month
growth rate of US
employment,
seasonally adjusted

Bureau of Labor
Statistics

Feb 1948 - Dec 2022

World exports WEX Month-to-month
growth rate of
world export, CPI
deflated, bil. US$

IMF Feb 1960 - Dec 2022

US PMI USPMI Month-to-month
growth rate of US
Purchasing
Manager Index,
seasonally adjusted

ISM Feb 1948 - Dec 2022
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C Empirical analysis appendix

Table 10: In-sample performance of explanatory variables (AUROC)

Forecast horizon (h)
Order Mnemonic 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

1 CFNAI 0.874 0.864 0.864 0.853 0.838 0.809 0.785 0.760 0.755 0.744 0.741 0.727 0.801
2 SP 0.660 0.697 0.728 0.755 0.782 0.803 0.821 0.822 0.826 0.832 0.837 0.842 0.784
3 SR 0.854 0.823 0.797 0.771 0.744 0.713 0.682 0.653 0.627 0.615 0.614 0.614 0.709
4 CLI 0.602 0.649 0.706 0.740 0.754 0.756 0.747 0.728 0.708 0.691 0.680 0.672 0.703
5 USE 0.754 0.753 0.738 0.701 0.681 0.654 0.649 0.627 0.631 0.608 0.615 0.586 0.666
6 USIP 0.711 0.692 0.709 0.679 0.666 0.658 0.631 0.612 0.638 0.610 0.621 0.614 0.653
7 BCNE 0.650 0.655 0.662 0.654 0.677 0.683 0.672 0.667 0.635 0.611 0.610 0.597 0.648
8 TSX 0.651 0.661 0.693 0.671 0.671 0.684 0.668 0.654 0.618 0.614 0.593 0.584 0.647
9 BCPI-M 0.622 0.640 0.676 0.710 0.738 0.703 0.666 0.629 0.595 0.571 0.596 0.576 0.644
10 M1 0.615 0.641 0.647 0.627 0.643 0.648 0.625 0.610 0.611 0.595 0.614 0.600 0.623

11 BCPI 0.651 0.670 0.672 0.645 0.649 0.629 0.603 0.594 0.575 0.558 0.532 0.504 0.607
12 CCI 0.582 0.587 0.615 0.620 0.642 0.653 0.635 0.597 0.576 0.572 0.597 0.593 0.606
13 BCPI-A 0.609 0.620 0.597 0.581 0.577 0.614 0.648 0.662 0.629 0.608 0.560 0.531 0.603
14 BCPI-F 0.609 0.613 0.611 0.584 0.598 0.593 0.579 0.559 0.535 0.533 0.555 0.575 0.579
15 BCPI-O 0.620 0.645 0.644 0.612 0.610 0.574 0.535 0.521 0.513 0.505 0.493 0.544 0.568
16 RIGS 0.605 0.613 0.607 0.585 0.583 0.557 0.543 0.536 0.556 0.538 0.539 0.553 0.568
17 RAIL 0.586 0.613 0.574 0.572 0.589 0.584 0.566 0.536 0.556 0.543 0.535 0.552 0.567
18 BCPI-E 0.618 0.640 0.638 0.607 0.593 0.561 0.529 0.522 0.514 0.501 0.519 0.551 0.566
19 HS 0.616 0.602 0.584 0.582 0.597 0.565 0.535 0.541 0.517 0.496 0.521 0.503 0.555
20 IM 0.601 0.579 0.584 0.583 0.581 0.543 0.529 0.510 0.539 0.519 0.547 0.525 0.553
21 USPMI 0.555 0.560 0.567 0.567 0.577 0.554 0.570 0.476 0.533 0.537 0.554 0.533 0.549
22 EX 0.541 0.555 0.542 0.549 0.549 0.546 0.543 0.544 0.542 0.520 0.515 0.513 0.538
23 IM 0.558 0.571 0.594 0.563 0.543 0.520 0.494 0.494 0.509 0.539 0.502 0.505 0.533
24 BP 0.583 0.563 0.552 0.549 0.551 0.534 0.522 0.501 0.528 0.496 0.498 0.496 0.531
25 CAD 0.540 0.559 0.559 0.545 0.544 0.507 0.512 0.503 0.543 0.541 0.486 0.517 0.530
26 BCPI-G 0.578 0.591 0.568 0.553 0.525 0.511 0.509 0.519 0.508 0.484 0.467 0.471 0.524

Notes: this table shows the in-sample AUROC values calculated from single-variable static probit models,
with lags varying between one and twelve-months ahead. The last column provides the average AUROC
values across these forecast horizons. The models are estimated using MCL with data going from June 1973
to December 2022. The variables are sorted in descending order of performance. See Table 9 for the
variable abbreviations.
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Table 11: Models in-sample performance comparison (h = 1)

Model AUROC TPR FPR R2 QPS RMSE
ARMCL 98.7% 89.3% 3.1% 75.4% 4.3% 14.7%
ST 93.8% 66.1% 2.9% 42.9% 10.0% 22.4%
STHN 91.9% 71.4% 4.6% 44.1% 9.8% 22.1%
DYNHN 98.4% 92.9% 1.0% 82.4% 3.1% 12.4%
ARHN 98.9% 94.6% 2.9% 70.8% 5.1% 16.0%
DYNARHN 98.5% 92.9% 1.0% 82.4% 3.1% 12.4%

Notes: R2, QPS and RMSE stand for the pseudo R2, quadratic probability score and
root-mean squared error, respectively. The true positive rates (TPR) and the false positive
rates (FPR) are calculated at the 25% threshold. The first two rows reflect the performance
of the AR and ST probit models presented in this paper. The last four rows reflect the
performance of the static (STHN ), dynamic (DYNHN ), autoregressive (ARHN ) and dynamic
autoregressive (DYNARHN ) probit models replicated from Hao and Ng (2011).

Table 12: Models OOS TPR and FPR comparison (h = 1)

Model TPR12.5 FPR12.5 TPR25 TPR25 TPR50 TPR50

ARMCL 91.4% 2.2% 88.6% 1.1% 71.4% 0.3%
ST 85.7% 8.1% 74.3% 3.2% 34.3% 0.5%
STHN 85.7% 8.1% 65.7% 1.4% 37.1% 0.8%
DYNHN 77.1% 5.7% 68.6% 3.2% 37.1% 0.5%
ARHN 91.4% 19.2% 71.4% 6.8% 48.6% 0.8%
DYNARHN 77.1% 5.4% 62.9% 4.1% 37.1% 0.5%

Notes: The true positive rates (TPR) and the false positive rates (FPR) are calculated at the
12.5%, 25% and 50% thresholds. The first two rows reflect the performance of the AR and ST
probit models presented in this paper. The last four rows reflect the performance of the static
(STHN ), dynamic (DYNHN ), autoregressive (ARHN ) and dynamic autoregressive (DYNARHN )
probit models replicated from Hao and Ng (2011).

Table 13: Turning points identification (OOS)

50% threshold 50% threshold

Peaks ARMCL ST Troughs ARMCL ST

March 1990 -2 6 May 1992 -5 -11
October 2008 +1 3 May 2009 -1 -3
February 2020 +1 +1 April 2020 0 2

Notes: (+a) or (−a) imply that a model identifies a turning point ”a” months too late or too
early. A peak is identified too early (late) if the model’s forecasted probability exceed a given
threshold before (after) the actual peak. A trough is identified too early (late) if the model’s
forecasted probability fell below a given threshold before (after) the actual trough. The lags
and leads in this table are assessed at the 50% threshold.
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Table 14: Models in-sample performance comparison (h = 1, ex. COVID)

Model AUROC DIFF R2 QPS RMSE
ARMCL 99.3% 77.8% 4.0% 14.1%
ST 97.5% 1.7%∗∗∗ 52.5% 8.5% 20.6%
STHN 92.6% 6.7%∗∗∗ 45.3% 9.8% 22.2%
DYNHN 98.7% 0.6% 85.6% 2.6% 11.4%
ARHN 99.2% 0.1% 73.7% 4.7% 15.4%
DYNARHN 98.8% 0.5% 85.7% 2.6% 11.3%

Notes: The second column shows the difference between the ARMCL and the specified model
AUROC values, along with its test of significance. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2, QPS and
RMSE stand for the pseudo R2, quadratic probability score and root-mean squared error,
respectively. The first two rows reflect the performance of the AR and ST probit models
presented in this paper. The last four rows reflect the performance of the static (STHN ), dynamic
(DYNHN ), autoregressive (ARHN ) and dynamic autoregressive (DYNARHN ) probit models
replicated from Hao and Ng (2011).
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